21 research outputs found

    Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

    Full text link
    Detecting arbitrarily oriented tiny objects poses intense challenges to existing detectors, especially for label assignment. Despite the exploration of adaptive label assignment in recent oriented object detectors, the extreme geometry shape and limited feature of oriented tiny objects still induce severe mismatch and imbalance issues. Specifically, the position prior, positive sample feature, and instance are mismatched, and the learning of extreme-shaped objects is biased and unbalanced due to little proper feature supervision. To tackle these issues, we propose a dynamic prior along with the coarse-to-fine assigner, dubbed DCFL. For one thing, we model the prior, label assignment, and object representation all in a dynamic manner to alleviate the mismatch issue. For another, we leverage the coarse prior matching and finer posterior constraint to dynamically assign labels, providing appropriate and relatively balanced supervision for diverse instances. Extensive experiments on six datasets show substantial improvements to the baseline. Notably, we obtain the state-of-the-art performance for one-stage detectors on the DOTA-v1.5, DOTA-v2.0, and DIOR-R datasets under single-scale training and testing. Codes are available at https://github.com/Chasel-Tsui/mmrotate-dcfl.Comment: Accepted by CVPR202

    Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows

    No full text
    The objectives of this study were to investigate the effects of soybean isoflavone (SI) and astragalus polysaccharide (APS) mixture on the colostrum components, serum antioxidant, immune and hormone levels of lactating sows. A total of 72 healthy Yorkshire × Landrace lactating sows, were randomly divided into four treatments with six replicates and three lactating sows for each replicate. The control group was fed the basal diet, while the experimental groups were fed the basal diet with 100, 200 and 300 mg/kg SI and APS mixture in the form of powder, respectively. Compared with the control group, (a) the total lactation yield of the 200 mg/kg group was significantly higher (p < 0.05) at 21 days, (b) there was no significant difference in colostrum composition, (c) TG, CHO and MDA content in each treatment group were significantly decreased (p < 0.05), (d) IgA, GH, IGF-1, TNF-α and SOD contents in the 200 mg/kg group were significantly increased (p < 0.05). The SI and APS mixture could improve the average daily feed intake, lactation yield, serum antioxidant activities, immune function, and hormone levels of lactating sows, and the optimum dosage in this study was 200 mg/kg

    Research on a Noise Reduction Method Based on Multi-Resolution Singular Value Decomposition

    No full text
    Reducing noise pollution in signals is of great significance in the field of signal detection. In order to reduce the noise in the signal and improve the signal-to-noise ratio (SNR), this paper takes the singular value decomposition theory as the starting point, and constructs various singular value decomposition denoising models with multiple multi-division structures based on the two-division recursion singular value decomposition, and conducts a noise reduction analysis on two experimental signals containing noise of different power. Finally, the SNR and mean square error (MSE) are used as indicators to evaluate the noise reduction effect, it is verified that the two-division recursion singular value decomposition is the optimal noise reduction model. This noise reduction model is then applied to the diagnosis of faulty bearings. By this method, the fault signal is decomposed to reduce noise and the detail signal with maximum kurtosis is extracted for envelope spectrum analysis. Comparison of several traditional signal processing methods such as empirical modal decomposition (EMD), ensemble empirical mode decomposition (EEMD), variational mode decomposition (VMD), wavelet decomposition, etc. The results show that multi-resolution singular value decomposition (MRSVD) has better noise reduction effect and can effectively diagnose faulty bearings. This method is promising and has a good application prospect

    Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba

    No full text
    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT (GbAACT, GenBank Accession No. KX904942) and MVK (GbMVK, GenBank Accession No. KX904944) were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis

    Full-Length Transcriptome Analysis of the Ichthyotoxic Harmful Alga <i>Heterosigma akashiwo</i> (Raphidophyceae) Using Single-Molecule Real-Time Sequencing

    No full text
    The raphidophyte Heterosigma akashiwo is a harmful algal species. The bloom of this organism has been associated with the massive mortality of fish in many coastal waters. To investigate the molecular mechanism of H. akashiwo blooms, having a reliable reference transcriptome of this species is essential. Therefore, in this study, a full-length transcriptome of H. akashiwo was obtained by single-molecule real-time sequencing. In total, 45.44 Gb subread bases were generated, and 16,668 unigenes were obtained after the sequencing data processing. A total of 8666 (52.00%) unigenes were successfully annotated using seven public databases. Among them, mostly phosphorus and nitrogen metabolism genes were detected. Moreover, there were 300 putative transcription factors, 4392 putative long non-coding RNAs, and 7851 simple sequence repeats predicted. This study provides a valuable reference transcriptome for understanding how H. akashiwo blooms at a molecular level

    Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with cancer

    No full text
    Abstract Background Tumor mutation burden (TMB), DNA mismatch repair deficiency (dMMR), microsatellite instability (MSI), and PD‐L1 amplification (PD‐L1 AMP) may predict the efficacy of the PD‐1/PD‐L1 blockade. With the broadening landscape of immunotherapy use, it is important to identify patients who are likely to benefit from the therapy. This study aimed to characterize the distributions of these biomarkers and explore the relationships among these biomarkers for Chinese patients with cancer. Methods In this study, we examined the aforementioned biomarkers in more than 1000 Chinese patients with cancer. These biomarkers were determined based on whole‐exome sequencing (WES) of tumor/blood samples. Results Of the 953 samples from Chinese cancer patients assessed in this study, 35% exhibited high TMB (TMB‐H), 4% were positive for high MSI (MSI‐H), dMMR occurred in 0.53%, and PD‐L1 AMP was positive in 3.79%. We found higher rates of TMB‐H among hepatocellular carcinoma, breast cancer, and esophageal cancer patients than was reported for The Cancer Genome Atlas (TCGA) data. Lung cancer patients with EGFR mutations had significantly lower TMB values than those with wild‐type EGFR, and increased TMB was significantly associated with dMMR in colorectal cancer (CRC). The frequency of tumors with MSI‐H was the highest in CRC and gastric cancer. PD‐L1 AMP occurred most frequently in lung squamous cell carcinoma and HER2‐positive breast cancer. While MSI and dMMR are associated with higher mutational loads, correlations between TMB‐H and other biomarkers, between MSI‐H and dMMR, and between PD‐L1 AMP and other biomarkers were low, indicating different underlying causes of the four biomarkers. Conclusion The results reveal the frequency of these biomarkers in different malignancies, with potential implications for PD‐1/PD‐L1 blockade use for Chinese patients with cancer

    Insertion/Deletion Within the KDM6A Gene Is Significantly Associated With Litter Size in Goat

    No full text
    A previous whole-genome association analysis identified lysine demethylase 6A (KDM6A), which encodes a type of histone demethylase, as a candidate gene associated to goat fecundity. KDM6A gene knockout mouse disrupts gametophyte development, suggesting that it has a critical role in reproduction. In this study, goat KDM6A mRNA expression profiles were determined, insertion/deletion (indel) variants in the gene identified, indel variants effect on KDM6A gene expression assessed, and their association with first-born litter size analyzed in 2326 healthy female Shaanbei white cashmere goats. KDM6A mRNA was expressed in all tissues tested (heart, liver, spleen, lung, kidney, muscle, brain, skin and testis); the expression levels in testes at different developmental stages [1-week-old (wk), 2, 3 wk, 1-month-old (mo), 1.5 and 2 mo] indicated a potential association with the mitosis-to-meiosis transition, implying that KDM6A may have an essential role in goat fertility. Meanwhile, two novel intronic indels of 16 bp and 5 bp were identified. Statistical analysis revealed that only the 16 bp indel was associated with first-born litter size (P &lt; 0.01), and the average first-born litter size of individuals with an insertion/insertion genotype higher than that of those with the deletion/deletion genotype (P &lt; 0.05). There was also a significant difference in genotype distributions of the 16 bp indel between mothers of single-lamb and multi-lamb litters in the studied goat population (P = 0.001). Consistently, the 16 bp indel also had a significant effect on KDM6A gene expression. Additionally, there was no significant linkage disequilibrium (LD) between these two indel loci, consistent with the association analysis results. Together, these findings suggest that the 16 bp indel in KDM6A may be useful for marker-assisted selection (MAS) of goats

    Effects of Dietary <i>Bacillus coagulans</i> and Tributyrin on Growth Performance, Serum Antioxidants, Intestinal Morphology, and Cecal Microbiota of Growing Yellow-Feathered Broilers

    No full text
    This study investigated the impact of Bacillus coagulans (BC) and tributyrin (TB) supplementation on the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broilers. Using a 2 × 2 factorial design, 480 broilers were randomly assigned to four experimental diets, comprising two levels of BC (0 and 1 g/kg) and two levels of TB (0 and 1 g/kg), over a 36-day period. A significant interaction was observed between BC and TB, impacting the average daily feed intake (ADFI) of broilers aged between 26 and 40 days (p p p < 0.05). The addition of BC and TB significantly enhanced the richness and diversity of cecal microbiota, with a notable interactive effect observed for the abundance of Faecalibacterium, Ruminococcus_torques_group, and Phascolarctobacterium. In conclusion, supplementation with BC and TB can effectively improve the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota composition of yellow-feathered broilers, indicating the presence of an interactive effect
    corecore