4 research outputs found

    A STUDY ON ACUTE TOXICITY OF METHANOLIC EXTRACT OF MESUA FERREA L. IN SWISS ALBINO MICE

    No full text
    Objective:To evaluate the Acute toxicological studies of the methanolic extract of dried flowers of Mesua ferrea in experimental female Swiss albino mice.Methods: Acute toxicological studies of the methanolic extract of dried flowers of M.ferrea inexperimental female Swiss albino mice of four groups were conducted as per OECD guidelines. The parameters were screened such as Physical observation time, Body weight, food and water consumption, Haematological and biochemical parameters.The doses used were 50 mg/kg, 500 mg/kg and 2000 mg/kg.Results: None of the group examined showed significant change in the body weights and mortality.At the dose levels tested, no toxicity signs were observed in the mice.There is no significant difference between control and treated animals in their haematological as well as biochemical test results.One way analysis of variance (ANOVA) was used to determine the significance between groups.Conclusion: This study was concluded that the acute toxicity study of M.ferrea leafextract administered orally to mice did not caused any death or acute adverseeffect on the clinical observation and mortality to thetreatment animals.Keywords: M. ferrea, methanolic extract, experimental female Swiss albino mice, acute toxicity

    Optimization of the Transformation Protocol for Increased Efficiency of Genetic Transformation in <i>Hevea brasiliensis</i>

    No full text
    The recurring growth of bacterium in newly developed resistant cells and a minimal level of bacterial infection rate are the main limiting factors of Agrobacterium-mediated transformation experiments in Hevea brasiliensis. The current study aimed to optimize crucial factors of the transformation protocol in order to obtain an efficient transformation experimental model for Hevea using cotyledonary somatic embryos as explants. Transformation conditions such as antibiotic concentration, preculture duration, Agrobacterium concentration, sonication and cocultivation conditions were analyzed using the binary vector pCAMBIA2301. Transient transformation was confirmed by GUS histochemical staining. The best transformation efficiency was observed when the explants were not cultured on a preculture medium that contained acetosyringone at a level of 100 μM. The best results were obtained using a bacterial density of 0.45 at OD 600 nm, 50 s of sonication of explants in a bacterial liquid culture and a total incubation time of 18 min in the same bacterial suspension. Transmission electron microscopical analysis confirmed the impacts of sonication on bacterial infection efficiency. Cocultivation conditions of 22 °C and 84 h of darkness were optimal for the transfer of T-DNA. Agrobacterium was eliminated with 500 mg/L of timentin, and the selection of transformants was performed using 100 mg/L of kanamycin in the selection medium. The presence of transgene was confirmed in the resistant embryos by polymerase chain reaction (PCR). The improved method of genetic transformation established in the present study will be useful for the introduction of foreign genes of interest into the Hevea genome for the breeding of this economically important plant species in the future

    Identification and Functional Evaluation of Three Polyubiquitin Promoters from Hevea brasiliensis

    No full text
    Hevea brasiliensis is an economically important tree species that provides the only commercial source of natural rubber. The replacement of the CaMV35S promoter by endogenous polyubiquitin promoters may be a viable way to improve the genetic transformation of this species. However, no endogenous polyubiquitin promoters in Hevea have been reported yet. Here, we identified three Hevea polyubiquitin genes HbUBI10.1, HbUBI10.2 and HbUBI10.3, which encode ubiquitin monomers having nearly identical amino acid sequences to that of AtUBQ10. The genomic fragments upstream of these HbUBI genes, including the signature leading introns, were amplified as putative HbUBI promoters. In silico analysis showed that a number of cis-acting elements which are conserved within strong constitutive polyubiquitin promoters were presented in these HbUBI promoters. Transcriptomic data revealed that HbUBI10.1 and HbUBI10.2 had a constitutive expression in Hevea plants. Semi-quantitative RT-PCR showed that these three HbUBI genes were expressed higher than the GUS gene driven by CaMV35S in transgenic Hevea leaves. All three HbUBI promoters exhibited the capability to direct GFP expression in both transient and stable transformation assays, although they produced lower protoplast transformation efficiencies than the CaMV35S promoter. These HbUBI promoters will expand the availability of promoters for driving the transgene expression in Hevea genetic engineering

    Induction of Axillary Bud Swelling of <i>Hevea brasiliensis</i> to Regenerate Plants through Somatic Embryogenesis and Analysis of Genetic Stability

    No full text
    To overcome rubber tree (RT) tissue culture explant source limitations, the current study aimed to establish a new Hevea brasiliensis somatic embryogenesis (SE) system, laying the technical foundation for the establishment of an axillary-bud-based seedling regeneration system. In this study, in vitro plantlets of Hevea brasiliensis Chinese Academy of Tropical Agricultural Sciences 917 (CATAS 917) were used as the experimental materials. Firstly, the optimum conditions for axillary bud swelling were studied; then, the effects of phenology, the swelling time of axillary buds (ABs), and medium of embryogenic callus induction were studied. Plantlets were obtained through somatic embryogenesis. Flow cytometry, inter-simple sequence repeat (ISSR molecular marker) and chromosome karyotype analysis were used to study the genetic stability of regenerated plants along with budding seedlings (BSs) and secondary somatic embryo seedlings (SSESs) as the control. The results show that the rubber tree’s phenology period was mature, and the axillary bud induction rate was the highest in the 2 mg/L 6-benzyladenine (6-BA) medium (up to 85.83%). Later, 3-day-old swelling axillary buds were used as explants for callogenesis and somatic embryogenesis. The callus induction rate was optimum in MH (Medium in Hevea) + 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) + 1.5 mg/L 1-naphthalene acetic acid (NAA) + 1.5 mg/L Kinetin (KT) + 70 g/L sucrose (56.55%). The regenerated plants were obtained after the 175-day culture of explants through callus induction, embryogenic callus induction, somatic embryo development, and plant regeneration. Compared with the secondary somatic embryo seedling control, axillary bud regeneration plants (ABRPs) were normal diploid plants at the cellular and molecular level, with a variation rate of 7.74%
    corecore