21 research outputs found

    Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential

    No full text
    Arsenic is a metalloid that is highly toxic to living organisms in the environment. In this study, toxicity caused by inorganic arsenate (As(V)) to terrestrial plants, such as barley Hordeum vulgare and wheat Triticum aestivum, was predicted using the existing biotic ligand model (BLM) for bioluminescent Aliivibrio fischeri via interspecies extrapolation. Concurrently, the concept of cell plasma membrane electrical potential (Ψ0) was incorporated into the extrapolated BLM to improve the model predictability in the presence of major cations such as Ca2+. The 50% effective As(V) toxicity (EC50{HAsO42−}) to H. vulgare decreased from 45.1 ± 4.34 to 15.0 ± 2.60 µM as Ca2+ concentration increased from 0.2 to 20 mM owing to the accumulation of H2AsO4− and HAsO42− on the cell membrane surface. The extrapolated BLM, which only considered inherent sensitivity, explained well the alteration of As(V) toxicity to H. vulgare and T. aestivum by Ca2+ with in an order of magnitude, when considering a linear relationship between Ψ0 and EC50{HAsO42−}

    Characteristics of Metals Leached from Waste Printed Circuit Boards Using <i>Acidithiobacillus ferrooxidans</i>

    No full text
    The aim of this study was to compare leaching characteristics of metals from printed circuit boards (PCBs), taken from waste electrical and electronic equipment in the presence and in the absence of the iron-oxidizing bacteria, Acidithiobacillus ferrooxidans. A. ferrooxidans not only increases the leached concentration of Cu from the PCBs, but also inhibits the components of the 0K medium and leached Cu from forming precipitates such as libethenite (Cu2(PO4)(OH)), thereby assisting Cu recovery from the PCBs. In addition, the leached concentration of Pb from PCBs decreased in the presence of A. ferrooxidans, due to Pb forming amorphous precipitates. It is expected that Pb is not highly toxic to A. ferrooxidans. Consequently, A. ferrooxidans can be used as a cost-effective and environmentally friendly way to leach out valuable metals from PCBs as low-grade urban ore

    Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity

    No full text
    Biotic ligand model (BLM) was extended to predict the toxicity of inorganic arsenate (iAs(V)) to the luminescent bacteria, Aliivibrio fischeri. As the pH increased from 5 to 9, the HAsO42- form predominated more than the H2AsO4 form did, and the EC50[As](T) (50% effective iAs(V) concentration) decreased drastically from 3554 +/- 393 to 39 +/- 6 mu M; thus, the HAsO(4)(2- )form was more toxic to A. fischeri than H2AsO4. As the HPO42- activity increased from 0 to 0.44 mM, the EC50 {HAsO42-} values (50% effective HAsO42- activity) increased from 31 +/- 6 to 859 +/- 128 pM, indicating that the toxicity of iAs(V) decreased, owing to the competition caused by the structural similarity between iAs(V) and phosphate ions. However, activities of Ca2+ , Mg2+ , K+ , SO42-, NO3-, and HCO3- did not significantly affect the EC50{HAsO42-} values. The BLM was reconstructed to take into account the effects of pH and phosphate, and the conditional binding constants for H2PO4-, HPO42-, H2AsO4-, and HAsO42- to the active binding sites of A. fischeri were obtained; 3.424 for logK(XH2PO4), 4.588 for logK(XPO4) , 3.067 for logK(XH2AsO4), and 4.802 for logK(XH2AsO4). The fraction of active binding sites occupied by iAs(V) to induce 50% toxicity (f(mix) 50% ) was found to be 0.616.N

    Time series analysis for determining ecologically acceptable Cu concentration from species sensitivity distribution with biotic ligand models in soil pore water

    No full text
    A site-specific, ecologically acceptable concentration of Cu in soil pore water was determined with four trophic levels of soil-residing organisms. Specifically, soil pore water was periodically collected from a site contaminated with heavy metals using in-situ samplers. Dissolved Cu concentration, Ca2+, Mg2+, Na+, K+, Cl-, SO42-, NO3-, dissolved organic carbon, pH, and temperature were analyzed to derive a half-maximal effective concentration of Cu (EC50[Cu](T)) using a biotic ligand model (BLM). The BLM parameters, such as binding constants (logK(XBL)) and the fraction of biotic ligand sites occupied by Cu ions (f), were adapted from previous studies. The EC50{Cu2+} values were used to construct a species sensitivity distribution (SSD) curve from which the hazardous concentration, protecting 95% of the soil-residing organisms (HC5), was determined. Using ten BLM-based acceptable concentrations of Cu obtained by combining BLM and SSD, time series analysis was conducted with the fixed monitoring benchmark method to obtain maximum Cu concentration as an endpoint exhibiting no-adverse-effect which was found to be 0.084 mg/L of Cu in soil pore water at the test site. This study provides a systematic tool for determining an ecologically acceptable concentration of Cu in the soil by incorporating soil pore water chemistry and time series analysis.Y

    Diffusive gradients in thin films technique coupled to X-ray fluorescence spectrometry for the determination of bioavailable arsenic concentrations in soil

    No full text
    Many of the procedures for assessing the bioavailability of contaminant including arsenic (As) in soil are time-consuming, thus there is need to develop more effective methods. In this regard, a direct analysis of the binding resin in the diffusive gradient in thin film (DGT) by using wavelength dispersive X-ray fluorescence spectrometry (WDXRF) was tested in determining bioavailable As concentrations in soil. The binding resin obtained from the DGT was dried at room temperature in a desiccator with silica gel for 2 h, and directly analyzed by the WDXRF. The mass of As loaded in the DGT binding resin was plotted against the X-ray intensity obtained from the WDXRF analysis to a draw calibration curve, which showed good linearity (R-2 = 0.997) with a limit of quantification of 0.2 mu g. A correction factor (CF) for compensating the spectral interference between As-K alpha and Pb-L alpha was determined by considering the slope between the X-ray intensity measured at a Bragg angle of 48.781 degrees for As-K alpha and the Pb mass on the DGT binding resin. The use of the derived CF value (0.113) is reasonable to obtain As concentrations with a high accuracy. The relation between phytotoxicity of As to barley Hordeum vulgare and bioavailable As concentrations in soils, which were determined by means of the combined use of DGT and WDXRF, was observed. The study supports that the DGT-WDXRF can be a promising tool to predict soil phytotoxicity for As-contaminated soil risk management.N

    Effect of organic substrate and Fe oxides transformation on the mobility of arsenic by biotic reductive dissolution under repetitive redox conditions

    No full text
    Ā© 2022 Elsevier LtdThe mobility of arsenic (As) in soil is highly affected by the change in the form of iron oxides present in the soil, which has a strong correlation with the change in redox potential. In this study, the altered mobility of As under repetitive redox conditions and the effect of organic substrates (i.e., glucose) on such change during four anoxic-oxic cycles were studied. During the 1st anoxic period, 37.1% of soil As was released into the soil solution, but the As in the soil solution decreased to 25.2% after the 1st oxic period. Moreover, the As in the soil solution further decreased during the 2nd to 4th oxic periods, indicating further re-adsorption of aqueous As. The analysis of As speciation revealed that inorganic arsenate (As(V)) increased under the redox-oscillating conditions, probably due to the depletion of electron donors. When glucose was re-spiked at the beginning of the 4th cycle, aqueous As increased to 47.3% again in the anoxic period and decreased to 27.6% in the subsequent oxic period, indicating inhibition of As re-adsorption. During the same period, the amount of highly sorptive As(V) in the solution decreased sharply to less than 3.3%. The X-ray absorption near edge structure analysis with linear combination fitting confirmed that the transformation of Fe oxides to poorly crystalline structures such as ferrihydrite occurred during repetitive cycles. These results imply that the mobility of As can be increased in As-contaminated redox transition zones by the introduction of rainfall with labile organics or by the fluctuation of organic-rich groundwater.N

    Reduction of bioaccessibility of As in soil through in situ formation of amorphous Fe oxides and its long-term stability

    No full text
    The bioaccessibility of As in soil, rather than its total concentration, is closely related to its potential risk. In this study, the in situ formation of amorphous Fe oxides was applied to As-contaminated soil to induce As-Fe coprecipitates that can withstand the gastric digestion condition of human beings. To promote the formation of Fe oxides, 2% ferric nitrate (w/w) and 30% water (v/w) were introduced, and the pH was adjusted to similar to 7. The chemical extractability of As in soil was determined using the solubility/bioavailability research consortium method and five-step sequential extraction. In situ formation of Fe oxides resulted in a remarkable increase in the As associated with amorphous Fe oxides, decreasing most of the exchangeable As (i.e., the sum of SO42- and PO43- extractable As), and thereby reducing the bioaccessibility of As. The types of association between As and Fe oxides were investigated using X-ray absorption spectroscopy analysis. Linear combination fit (LCF) analysis demonstrated that As bound to amorphous Fe oxides could exist as coprecipitates with ferrihydrite and schwertmannite after stabilization. The bioaccessibility of the coprecipitated As in soil further deceased as amorphous Fe oxides transformed to crystalline form with time, which was supported by the LCF results showing an increase of goethite in aged soil. (C) 2020 Elsevier B.V. All rights reserved.N

    Continuous VOCs Monitoring in Saturated and Unsaturated Zones Using Thermal Desorber and Gas Chromatography: System Development and Field Application

    No full text
    Subsurface VOC monitoring has been mainly based on manual sampling, transport, and analysis, which would require a sufficient amount of samples to ensure data accuracy and reliability, and additional costs to ensure sample quality. Therefore, a continuous on-site monitoring system is desirable for accurate measurement and subsequent risk assessment. In this study, benzene, toluene, ethylbenzene, and xylene (BTEX) were continuously monitored by the system based on a thermal desorber (TD) and gas chromatography (GC) in an oil-contaminated site that consisted of saturated and unsaturated zones. For the saturated zone, fully automated groundwater sampling and purging processes were performed, and the gasified samples were applied to the TD&ndash;GC system. For the unsaturated zone, the gaseous sample in the site was directly applied to the TD&ndash;GC system. After verifying the accuracy and precision of the monitoring system, the continuous monitoring system was successfully operated for more than a month in the field. The monitoring system used in this study is applicable to other sites for continuous monitoring, thus providing a scientific background for advanced risk assessment and policy development

    Adsorption Characteristics of Dimethylated Arsenicals on Iron Oxide&ndash;Modified Rice Husk Biochar

    No full text
    In this study, the adsorption characteristics of dimethylated arsenicals to rice husk biochar (BC) and Fe/biochar composite (FeBC) were assessed through isothermal adsorption experiments and X-ray absorption spectroscopy analysis. The maximal adsorption capacities (qm) of inorganic arsenate, calculated using the Langmuir isotherm equation, were 1.28 and 6.32 mg/g for BC and FeBC, respectively. Moreover, dimethylated arsenicals did not adsorb to BC at all, and in the case of FeBC, qm values of dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) were calculated to be 7.08, 0.43, and 0.28 mg/g, respectively. This was due to the formation of iron oxide (i.e., two-line ferrihydrite) on the surface of BC. Linear combination fitting using As K-edge X-ray absorption near edge structure spectra confirmed that all chemical forms of dimethylated arsenicals adsorbed on the two-line ferrihydrite were DMA(V). Thus, FeBC could retain highly mobile and toxic arsenicals such as DMMTA(V) and DMDTA(V)) in the environment, and transform them into DMA(V) with relatively low toxicity

    Synaptic Transistor Based on Inā€Gaā€Znā€O Channel and Trap Layers with Highly Linear Conductance Modulation for Neuromorphic Computing

    No full text
    Abstract Brainā€inspired neuromorphic computing has drawn significant attraction as a promising technology beyond von Neumann architecture by using the parallel structure of synapses and neurons. Various artificial synapse configurations and materials have been proposed to emulate synaptic behaviors for human brain functions such as memorizing, learning, and visual processing. Especially, the memory type indiumā€galliumā€zincā€oxide (IGZO) synaptic transistor adopting a charge trapping layer (CTL) has the advantages of high stability and a low leakage current of the IGZO channel. However, the CTL material should be carefully selected and optimized to overcome the low deā€trapping efficiency, resulting from difficulty in inducing holes in the IGZO channel. In this paper, IGZO is adopted as a CTL and found out that making it degenerated is crucial to improving deā€trapping efficiency. The degenerate CTL, where electrons remain as free electrons, induces Fowlerā€Nordheim tunneling by increasing the electric field across the tunneling layer. As a result, the synaptic transistor represents a high linearity of potentiation (Ī±p: āˆ’0.03) and depression (Ī±d: āˆ’0.47) with 64 conductance levels, which enables the spiking neural network simulation to achieve high accuracy of 98.08%. These experimental results indicate that the synapse transistor can be one of the promising candidates for neuromorphic applications
    corecore