4 research outputs found

    Broadband and High-Efficiency Multi-Tasking Silicon-Based Geometric-Phase Metasurfaces: A Review

    No full text
    Silicon (Si)-based geometric phase metasurfaces are fantastic state-of-the-art light field manipulators. While the optical metasurfaces generally excel in the micro-control of light with supreme accuracy and flexibility, the geometric phase principle grants them the much-desired broadband phase manipulation property, free from material dispersion. Furthermore, adopting Si as their fundamental material serves as a critical step toward applicable practice. Thanks to the optical lossless feature and CMOS compatibility, Si-based metasurfaces are bestowed with high efficiency and fabrication conveniency. As a result, the Si-based metasurfaces can be perfectly integrated into Si-based optoelectronic chips with on-demand functions, trending to replace the conventional bulky and insufficient macroscopic optical devices. Here we review the origin, physical characteristics, and recent development of Si-based geometric-phase metasurfaces, especially underscoring their important achievements in broadband, high efficiency, and multitasking functionalities. Lastly, we envision their typical potential applications that can be realized in the near future

    Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution

    No full text
    Abstract Chemical reaction kinetics can be evaluated by probing dynamic changes of chemical substrates or physical phenomena accompanied during the reaction process. Chemiluminescence, a light emitting exoenergetic process, involves random reaction positions and kinetics in solution that are typically characterized by ensemble measurements with nonnegligible average effects. Chemiluminescent reaction dynamics at the single-molecule level remains elusive. Here we report direct imaging of single-molecule chemiluminescent reactions in solution and probing of their reaction dynamics under catalytic conditions. Double-substrate Michaelis–Menten type of catalytic kinetics is found to govern the single-molecule reaction dynamics in solution, and a heterogeneity is found among different catalyst particles and different catalytic sites on a single particle. We further show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level. Our work provides fundamental insights into chemiluminescent reactions and offers an efficient approach for evaluating catalysts
    corecore