3 research outputs found
Tuning electronic and optical properties of BlueP/MoSe2 van der Waals heterostructures by strain and external electric field
Van der Waals heterostructures (vdWHs) have recently attracted much attention owing to their excellent physicochemical properties and extensive application prospects. The structural, electronic and optical properties of BlueP/MoSe2 vdWHs are systematically investigated based on the first-principles calculations. The BlueP/MoSe2 vdWHs are indirect band gap semiconductors with type II band alignment. Biaxial strain and external electric field (Efield) can effectively modulate the electronic and optical properties of the heterostructures. The biaxial strain and Efield not only can induce a transition of the semiconductors from type Ⅱ to type I band alignment, but also can achieve the semiconductor–metal transition. The band gap values of heterostructures show linear variation, while the characteristic of the indirect band gap is not changed under the Efield. Tensile strain can induce the red shift and the compressive strain cause the blue shift of the heterostructures. The work provides theoretical guidance for design of the photovoltaic materials and photoelectric devices
Modulation of electronic and optical properties of BlueP/MoSSe heterostructures via biaxial strain and vertical electric field
Constructing van der Waals heterostructures (vdWHs) is an efficient approach for enhancing the desirable properties of two-dimensional (2D) materials and greatly expanding the range of applications of the original monolayer materials. The structure, stability, electronic and optical properties of BlueP/MoSSe heterostructures are explored by density functional theory (DFT) calculations. The different configurations of BlueP/MoSSe vdWHs are all indirect bandgap semiconductors and have similar energy band structures, with the bandgap of about 1.0Â eV under the PBE method. The bandgap of the A3 (B3) configuration calculated with HSE06 method is 1.608 (1.377) eV. The A3 configuration exhibits type-II band alignment while the B3 configuration shows type-I band alignment, both of which have high stability. The bandgap and band edge of A3 (B3) configuration can be modulated effectively by biaxial strain and vertical electric field (Efield). The BlueP/MoSSe vdWHs have broader absorption range and higher absorption intensity than their monolayers. The optical absorption intensity of heterostructures is gradually improved with increasing compressive strain, and the optical absorption spectrum is red-shifted under tensile strain. We hope that our findings will provide meaningful theoretical guidance for the preparation and potential application of BlueP/MoSSe vdWHs