5 research outputs found

    Acoustic wave-driven oxide dependant dynamic behavior of liquid metal droplet for inkjet applications

    No full text
    In this paper, we report bouncing and separating dynamic behaviors of a liquid metal droplet with/without the oxide layer in response to the applied acoustic wave. The oxidized liquid metal droplet is readily bounced off from the surface when it is excited by acoustic wave, while the HCl treated liquid metal droplet is fragmented into several small droplets. The bouncing height of the oxidized liquid metal is proportional to the applied acoustic wave amplitude. The number of the fragmented liquid metal droplets for the HCl-treated liquid metal according to time and acoustic wave amplitude was investigated. We also demonstrated the acoustic wave-based inkjet application to generate liquid metal droplets based on the pinch-off and the Rayleigh instability by changing amplitude of the acoustic wave. The probability for the generation of various droplet sizes with different acoustic wave amplitude was also studied

    Acoustic wave-driven oxidized liquid metal-based energy harvester

    No full text
    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates

    On-demand frequency tunability of fluidic antenna implemented with gallium-based liquid metal alloy

    No full text
    We investigated frequency tunability of a microfluidic-based antenna using on-demand manipulation of a gallium-based liquid metal alloy. The fluidic antenna was fabricated by polydimethylsiloxane (PDMS) and filled with the gallium-based liquid metal alloy (Galinstan®). It is composed of a digital number “7”-shaped feedline, and a square-shaped and a digital number “6”-shaped patterns, which are all implemented with the liquid metal. The gallium-based liquid metal was adhered to the channel surface due to its viscous oxide layer originating from the gallium oxide forming when it exposed to the air environment. We treated the liquid metal with hydrochloric acid solution to remove the oxide layer on the surface resulting in easy movement of the liquid metal in the channel, as the liquid metal surface has been transformed to be non-wettable. We controlled the physical length of the liquid metal slug filled in feedline with an applied air pressure, resulting in tuning the resonant frequency ranging from 2.2 GHz to 9.3 GHz. The fluidic antenna properties using the liquid metal’s electrical conductivity and mobility were characterized by measuring the return loss (S11), and also simulated with CST Microwave Studio
    corecore