110 research outputs found

    Hydrological Drought Forecasting and Assessment Based on the Standardized Stream Index in the Southwest China

    Get PDF
    AbstractSouthwest China is abundant of rainfall and water resources, however, severe and extremely droughts hits it more frequently in recent years, caused huge loss of human lives and financial damages. To investigate the feasibility of the standardized stream index in Southwest China, the Nanpanjiang River basin above the Xiaolongtan hydrological station was selected as the case study site. Based on long-term daily hydrological and meteorological data series, the generated runoff was simulated by the daily Xinanjiang model, then the standardized stream index was calculated and its feasibility was explored by comparing it with other two hydrological drought index. The result revealed that the standardized stream index performed well in detecting the onset, severity and duration in 2009/2010 extremely drought. The output of the paper could provide valuable references for the regional and national drought monitoring and forecasting systems

    Definition and Design of Zero Energy Buildings

    Get PDF
    The wide application of renewable energy system (RES) in buildings combined with numerous financial incentives on RES paves the way for future zero energy buildings (ZEB). Although the definition of ZEB still lacks a national building code and international standards, the number of ZEB projects is still increasing worldwide which seems to be the pioneer ZEB buildings. However, due to the intermittency of the renewable resources, various uncertain parameters, and dynamic electricity price from the grid, how to select the renewable energy system for buildings is one of the challenges and therefore becomes an extensive concern for both researchers and designers. In addition, questions like how to achieve the target of zero energy for different types of buildings, should the building be designed as an independent ZEB or a group of buildings to be a ZEB cluster, and how to make building owners actively involved in installing enough RES for the building are still on the air. This chapter will present a comprehensive view on several key issues related with ZEB, that is, definition, evaluation criteria, design method, and uncertainty analysis, and the penalty cost scheme is also proposed for consideration as one policy to assist the promotion of ZEB

    Influence of symbiotic bacteria on the susceptibility of Plagiodera versicolora to Beauveria bassiana infection

    Get PDF
    The symbiotic bacterial microbiota of insects has been shown to play essential roles in processes related to physiology, metabolism, and innate immunity. In this study, the symbiotic microbiome of Plagiodera versicolora at different developmental stages was analyzed using 16S rRNA high-throughput sequencing. The result showed that symbiotic bacteria community in P. versicolora was primarily made up of Actinobacteriota, Proteobacteria, Firmicutes, Bacteroidota, and Dependentiae. The bacterial composition among different age individuals were highly diverse, while 65 core genera were distributed in all samples which recommend core bacterial microbiome. The 8 species core bacteria were isolated from all samples, and all of them were classified as Pseudomonas sp. Among them, five species have been proven to promote the vegetable growth of Beauveria bassiana. Moreover, the virulence of B. bassiana against nonaxenic larvae exceeded B. bassiana against axenic larvae, and the introduction of the Pseudomonas sp. to axenic larvae augmented the virulence of fungi. Taken together, our study demonstrates that the symbiotic bacteria of P. versicolora are highly dissimilar, and Pseudomonas sp. core bacteria can promote host infection by entomopathogenic fungus. This result emphasizes the potential for harnessing these findings in the development of effective pest management strategies

    Latest advances in the regulatory genes of adipocyte thermogenesis

    Get PDF
    An energy imbalance cause obesity: more energy intake or less energy expenditure, or both. Obesity could be the origin of many metabolic disorders, such as type 2 diabetes and cardiovascular disease. UCP1 (uncoupling protein1), which is highly and exclusively expressed in the thermogenic adipocytes, including beige and brown adipocytes, can dissipate proton motive force into heat without producing ATP to increase energy expenditure. It is an attractive strategy to combat obesity and its related metabolic disorders by increasing non-shivering adipocyte thermogenesis. Adipocyte thermogenesis has recently been reported to be regulated by several new genes. This work provided novel and potential targets to activate adipocyte thermogenesis and resist obesity, such as secreted proteins ADISSP and EMC10, enzyme SSU72, etc. In this review, we have summarized the latest research on adipocyte thermogenesis regulation to shed more light on this topic

    Comprehensive Evaluation of Fruit Quality of Actinidia arguta Based on Principal Component Analysis and Cluster Analysis

    Get PDF
    In order to scientifically evaluate the fruit quality of different Actinidia arguta varieties and establish the quality evaluation system, 10 Actinidia arguta varieties were used as experimental materials, and the indexes of fruit appearance quality and nutritional quality were measured and compared under edible conditions. The fruit quality of Actinidia arguta was comprehensively evaluated by correlation analysis, principal component analysis and cluster analysis. The results showed that the quality indexes of different varieties of Actinidia arguta were different and correlated. The difference of the content of Vitamin C was largest, and the coefficient of variation was 53.08%. The difference of fruit color brightness (L* value) was the smallest, and the coefficient of variation was 6.04%. By principal component analysis, 18 quality indicators were simplified into 6 principal components, and the cumulative variance contribution rate was 90.571%, which could reflect most of the information of the original quality indexes. The comprehensive scores of quality indexes of 10 Actinidia arguta varieties were ranked as ‘Longcheng No.2’, ‘Kuilü’, ‘Jialü’, ‘Wanlü’, ‘Tianxinbao’, ‘Lübao’, ‘Xinlü’, ‘Cuiyu’, ‘Fenglü’ and ‘Pingllü’. According to cluster analysis, 10 Actinidia arguta varieties were divided into five categories, among which ‘Longcheng No.2’ and ‘Kuilü’ in the first category had better comprehensive quality traits. The study provided a reference for the variety breeding, planting, extension and rational processing and utilization of Actinidia arguta

    Case report: A combined immunotherapy strategy as a promising therapy for MSI-H colorectal carcinomas with multiple HPD risk factors

    Get PDF
    Approximately 5% of advanced colorectal carcinomas (CRCs) and 12–15% of early CRCs are microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors. Nowadays, PD-L1 inhibitors or combined CTLA4 inhibitors are the major strategies for advanced or metastatic MSI-H colorectal cancer, but some people still show drug resistance or progression. Combined immunotherapy has been shown to expand the benefit population in non-small-cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), and other tumors while reducing the incidence of hyper-progression disease (HPD). Nevertheless, advanced CRC with MSI-H remains rare. In this article, we describe a case of an elder patient with MSI-H advanced CRC carrying MDM4 amplification and DNMT3A co-mutation who responded to sintilimab plus bevacizumab and chemotherapy as the first-line treatment without obvious immune-related toxicity. Our case provides a new treatment option for MSI-H CRC with multiple risk factors of HPD and highlights the importance of predictive biomarkers in personalized immunotherapy

    Characterization of 9-Nitrocamptothecin Liposomes: Anticancer Properties and Mechanisms on Hepatocellular Carcinoma In Vitro and In Vivo

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer related mortality worldwide. 9-Nitrocamptothecin (9NC) is a potent topoisomerase-I inhibitor with strong anticancer effect. To increase the solubility and stability, we synthesized a novel 9NC loaded liposomes (9NC-LP) via incorporating 9NC into liposomes. In the present study, we determined the effects of 9NC and 9NC-LP on in vitro and in vivo, and the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We first analyzed the characteristics of 9NC-LP. Then we compared the effects of 9NC and 9NC-LP on the proliferation and apoptosis of HepG2, Bel-7402, Hep3B and L02 cells in vitro. We also investigated their anticancer properties in nude mice bearing HCC xenograft in vivo. 9NC-LP has a uniform size (around 190 nm) and zeta potential (∼-11 mV), and exhibited a steady sustained-release pattern profile in vitro. Both 9NC and 9NC-LP could cause cell cycle arrest and apoptosis in a dose-dependent and p53-dependent manner. However, this effect was not ubiquitous in all cell lines. Exposure to 9NC-LP led to increased expression of p53, p21, p27, Bax, caspase-3, caspase-8, caspase-9 and apoptosis-inducing factor, mitochondrion-associated 1 and decreased expression of Bcl-2, cyclin E, cyclin A, Cdk2 and cyclin D1. Furthermore, 9NC-LP exhibited a more potent antiproliferative effect and less side effects in vivo. Western blot analysis of the xenograft tumors in nude mice showed similar changes in protein expression in vivo. CONCLUSIONS/SIGNIFICANCE: In conclusion, 9NC and 9NC-LP can inhibit HCC growth via cell cycle arrest and induction of apoptosis. 9NC-LP has a more potent anti-tumor effect and fewer side effects in vivo, which means it is a promising reagent for cancer therapy via intravenous administration

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology

    Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method

    No full text
    Ground thermal properties are prerequisites for designing the size of borehole heat exchanger. In this study, a 3D heat transfer model is developed to simulate the thermal response test (TRT) of shallow coaxial borehole heat exchanger (SCBHE), and effects of ground thermal properties on the slope of the mean value of inlet and outlet fluid temperatures are studied. The results show that the slope is strongly affected by ground thermal conductivity and is slightly affected by ground thermal capacity, and that ground thermal capacity only has a small effect on the slope. Then, by using the difference between the experimental slope and calculated slope as the objective function to estimate ground thermal conductivity, an improved parameter estimation method (PEM) is proposed to estimate ground thermal properties of SCBHE using the simulated TRT data, and it is compared with the direct method. The results show that ground thermal conductivity and thermal capacity estimated by the improved PEM are accurate for different ground thermal properties, and that ground thermal conductivity estimated by the direct method probably has some errors especially for small ground thermal conductivity or thermal capacity, indicating that the improved PEM has much higher precision than the direct method and can be applied for estimating the ground thermal properties of SCBHE

    Investigation of the Effect of Rotation Speed on Vibration Responses of Transmission System

    No full text
    In the operating process, it is found the vibration of main reducer reaches a maximum value when certain types of vehicles are running at a speed around 4000 RPM. However, how the rotation speed of engine affects the vibration responses to automobile transmission system has not been investigated theoretically in details. To investigate this problem, the transmission system of automobile is simplified to a drive-final shaft system in this research, and a coupled vibration model of drive-final shaft system is developed. This model is used to simulate the vibration response to transmission system at different rotation speeds. Simulation results show that the torsional vibration responses reach the maximum when the rotation speeds are 3800 RPM and 4200 RPM and the vibration responses of pinion reach the maximum value when the rotation speeds are 4000 RPM and 4200 RPM. Moreover, finite element analysis is conducted to investigate the reason for this phenomenon. It is found that the torsional vibration responses reach the maximum value when the excitation frequency of engine is close to the resonance frequency of drive shafts. This research provides an effective method to analyse the vibration characteristics of automobile transmission system
    • …
    corecore