9 research outputs found

    CD13-Mediated Pegylated Carboxymethyl Chitosan-Capped Mesoporous Silica Nanoparticles for Enhancing the Therapeutic Efficacy of Hepatocellular Carcinoma

    No full text
    Liver cancer, especially hepatocellular carcinoma, is an important cause of cancer-related death, and its incidence is increasing worldwide. Nano drug delivery systems have shown great promise in the treatment of cancers. In order to improve their therapeutic efficacy, it is very important to realize the high accumulation and effective release of drugs at the tumor site. In this manuscript, using doxorubicin (DOX) as a model drug, CD13-targeted mesoporous silica nanoparticles coated with NGR-peptide-modified pegylated carboxymethyl chitosan were constructed (DOX/MSN-CPN). DOX/MSN-CPN comprises a spherical shape with an obvious capping structure and a particle size of 125.01 ± 1.52 nm. With a decrease in pH, DOX/MSN-CPN showed responsive desorption from DOX/MSN-CPN and pH-responsive release of DOX was observed. Meanwhile, DOX/MSN-CPN could be efficiently absorbed through NGR-mediated internalization in vitro and could efficiently deliver DOX to tumor tissues with long accumulation times in vivo, suggesting good active targeting properties. Moreover, significant tumor inhibition has been observed in antitumor studies in vivo. This study provides a strategy of utilizing DOX/MSN-CPN as a nano-platform for drug delivery, which has superb therapeutic efficacy and safety for the treatment of hepatocellular carcinoma both in vivo and in vitro

    Comparison of Widely Targeted Metabolomics and Untargeted Metabolomics of Wild Ophiocordyceps sinensis

    No full text
    The authors of this paper conducted a comparative metabolomic analysis of Ophiocordyceps sinensis (OS), providing the metabolic profiles of the stroma (OSBSz) and sclerotia (OSBSh) of OS by widely targeted metabolomics and untargeted metabolomics. The results showed that 778 and 1449 metabolites were identified by the widely targeted metabolomics and untargeted metabolomics approaches, respectively. The metabolites in OSBSz and OSBSh are significantly differentiated; 71 and 96 differentially expressed metabolites were identified by the widely targeted metabolomics and untargeted metabolomics approaches, respectively. This suggests that these 71 metabolites (riboflavine, tripdiolide, bromocriptine, lumichrome, tetrahymanol, citrostadienol, etc.) and 96 metabolites (sancycline, vignatic acid B, pirbuterol, rubrophen, epalrestat, etc.) are potential biomarkers. 4-Hydroxybenzaldehyde, arginine, and lumichrome were common differentially expressed metabolites. Using the widely targeted metabolomics approach, the key pathways identified that are involved in creating the differentiation between OSBSz and OSBSh may be nicotinate and nicotinamide metabolism, thiamine metabolism, riboflavin metabolism, glycine, serine, and threonine metabolism, and arginine biosynthesis. The differentially expressed metabolites identified using the untargeted metabolomics approach were mainly involved in arginine biosynthesis, terpenoid backbone biosynthesis, porphyrin and chlorophyll metabolism, and cysteine and methionine metabolism. The purpose of this research was to provide support for the assessment of the differences between the stroma and sclerotia, to furnish a material basis for the evaluation of the physical effects of OS, and to provide a reference for the selection of detection methods for the metabolomics of OS

    Identification of Substitutions and Small Insertion-Deletions Induced by Carbon-Ion Beam Irradiation in Arabidopsis thaliana

    No full text
    Heavy-ion beam irradiation is one of the principal methods used to create mutants in plants. Research on mutagenic effects and molecular mechanisms of radiation is an important subject that is multi-disciplinary. Here, we re-sequenced 11 mutagenesis progeny (M3) Arabidopsis thaliana lines derived from carbon-ion beam (CIB) irradiation, and subsequently focused on substitutions and small insertion-deletion (INDELs). We found that CIB induced more substitutions (320) than INDELs (124). Meanwhile, the single base INDELs were more prevalent than those in large size (≥2 bp). In details, the detected substitutions showed an obvious bias of C > T transitions, by activating the formation of covalent linkages between neighboring pyrimidine residues in the DNA sequence. An A and T bias was observed among the single base INDELs, in which most of these were induced by replication slippage at either the homopolymer or polynucleotide repeat regions. The mutation rate of 200-Gy CIB irradiation was estimated as 3.37 × 10−7 per site. Different from previous researches which mainly focused on the phenotype, chromosome aberration, genetic polymorphism, or sequencing analysis of specific genes only, our study revealed genome-wide molecular profile and rate of mutations induced by CIB irradiation. We hope our data could provide valuable clues for explaining the potential mechanism of plant mutation breeding by CIB irradiation
    corecore