48 research outputs found

    Design and Optimization of the Power Management Strategy of an Electric Drive Tracked Vehicle

    Get PDF
    This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge) of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization) is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation) platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles

    Safety and Immunogenicity of a Malaria Vaccine, Plasmodium falciparum AMA-1/MSP-1 Chimeric Protein Formulated in Montanide ISA 720 in Healthy Adults

    Get PDF
    The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 ”g respectively, and 1 placebo group of 12 participants receiving the adjuvant only.The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1∶10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.

    The complete mitochondrial genome of the chicken roundworm Ascaridia galli (Nematoda: Ascaridiidae)

    No full text
    Ascaridia galli (Nematoda: Ascaridiidae), infecting mainly the small intestine of chickens, is one of the most common nematodes in poultry worldwide. The complete mitochondrial genome sequence of A. galli was 13,981 bp in total length with 36 coding genes, namely, 12 protein-coding genes (PCGs), two ribosomal RNAs, and 22 transfer RNAs. All PCGs were transcribed in one direction. Phylogenetic analysis of the mitogenome of A. galli would further contribute to resolving its phylogenetic position and offer novel perspectives on phylogenetic studies of A. galli

    Research on the Crucial Technology in Virtual Training System of Engineering Equipment

    No full text
    The virtual training system involves a large number of technical problems which affect the promotion and application in our country. In this work, several key techniques for the development of engineering equipment virtual training system are addressed. Firstly, the reconstruction method for three views of machine parts is proposed based on rapid 3D surface fitting as well as NURBS composite surface. Then, the interactive control techniques for the 3D visualization interactive assembly are studied in detail. The key technology of collision detection is also illuminated in the last part. The entire engineering equipment support training system, that includes structure expressing, principle demonstration, panoramic roaming, disassembly training as well as maintenance and repair training, is developed. This facilitates the trainees in learning the support training procedures step by step, and quickly improves their technical skills. DOI: http://dx.doi.org/10.11591/telkomnika.v11i2.205

    Fast Terminal Sliding Mode Control of Permanent Magnet In-Wheel Motor Based on a Fuzzy Controller

    No full text
    A fast terminal sliding mode control is proposed in this paper for improving the dynamic performance and robustness of a permanent magnet in-wheel motor system driven by a voltage source inverter. Firstly, a fast terminal sliding mode approaching law was designed to accelerate the approaching rate of the control system. Then, a torque load observer was designed to compensate for disturbances and uncertainties. Finally, fuzzy rules were designed to suppress the chattering phenomenon. Simulation and experimental results demonstrated that the fast terminal sliding mode control strategy presented better response speed than the conventional sliding mode control strategy. It had better dynamic performance and anti-interference and effectively reduced the chattering phenomenon in the control process

    A Novel Energy Management Strategy for Series Hybrid Electric Rescue Vehicle

    No full text
    The performance and fuel consumption of hybrid electric vehicle heavily depend on the EMS (energy management strategy). This paper presents a novel EMS for a series hybrid electric rescue vehicle. Firstly, considering the working characteristics of engine and battery, the EMS combining logic threshold and fuzzy control is proposed. Secondly, a fuzzy control optimization method based on IQGA (improved quantum genetic algorithm) is designed to achieve better fuel efficiency. Then, the modeling and simulation are completed by using MATLAB/Simulink; the results demonstrate that the fuel consumption can be decreased by 5.17% after IQGA optimization and that the optimization effect of IQGA is better than that of GA (genetic algorithm) and QGA (quantum genetic algorithm). Finally, the HILS (hardware in loop simulation) platform is constructed with dSPACE; the HILS experiment shows that the proposed EMS can effectively improve the vehicle working efficiency, which can be applied to practical application

    Preparation and In Vitro Bioactivity Study of a Novel Hollow Mesoporous Bioactive Glass Nanofiber Scaffold

    No full text
    In this study, a novel three-dimensional hollow mesoporous bioactive glass nanofiber scaffold has been synthesized with a template-assisted sol-gel method using bacterial cellulose (BC) as a template and nonionic triblock copolymer (P123) as a pore-directing agent, ethyl orthosilicate (TEOS), calcium nitrate tetrahydrate (CN), and triethyl phosphate (TEP) as glass precursors. Scanning and transmission electron microscopies, X-ray diffraction, nitrogen adsorption-desorption, and nuclear magnetic resonance method were applied to characterize the morphology, crystal structure, and chemical structure of the mesoporous bioactive glass nanofiber scaffold. Furthermore, the in vitro bioactivity and biocompatibility were also explored. The obtained scaffold depicted nanofiber-like morphology and interconnected three-dimensional network structure that replicated the BC template. The scaffold showed a large specific surface area (230.0 cm2 g−1) and pore volume (0.2 m3 g−1). More importantly, the scaffold exhibited excellent apatite-forming ability and cellular biocompatibility. We believe that the hollow mesoporous bioactive glass nanofiber scaffold has great potential application in bone tissue regeneration

    A novel rapid visual detection assay for

    No full text
    Toxoplasmosis, a parasitic disease resulting from Toxoplasma gondii infection, remains prevalent worldwide, and causes great harm to immunodepressed patients, pregnant women and newborns. Although various molecular approaches to detect T. gondii infection are available, they are either costly or technically complex. This study aimed at developing a rapid visual detection assay using recombinase-aided amplification (RAA) and lateral flow dipstick (LFD) coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD) to detect T. gondii. The RAA-Cas13a-LFD assay was performed in an incubator block at 37 °C within 2 h, and the amplification results were visualized and determined through LFD by the naked eye. The detection limit was 1 × 10−6 ng/ÎŒL by our developed RAA-Cas13a-LFD protocol, 100-fold higher than that by qPCR assay (1 × 10−8 ng/ÎŒL). No cross-reaction occurred either with the DNA of human blood or Ascaris lumbricoides, Digramma interrupta, Entamoeba coli, Fasciola gigantica, Plasmodium vivax, Schistosoma japonicum, Taenia solium, and Trichinella spiralis, and the positive rate by RAA-Cas13a-LFD assay was identical to that by qPCR assay (1.50% vs. 1.50%) in detecting T. gondii infection in the unknown blood samples obtained from clinical settings. Our findings demonstrate that this RAA-Cas13a-LFD assay is not only rapid, sensitive, and specific and allows direct visualization by the naked eye, but also eliminates sophisticated and costly equipment. More importantly, this technique can be applied to on-site surveillance of T. gondii
    corecore