63 research outputs found

    Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro

    Get PDF
    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1+ cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors

    Carbon Nanotubes Enhance Cytotoxicity Mediated by Human Lymphocytes In Vitro

    Get PDF
    With the expansion of the potential applications of carbon nanotubes (CNT) in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 µg/ml) did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-γ and TNF-α by the lymphocytes. CNT also upregulated the NF-κB expression in lymphocytes, and the blockage of the NF-κB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes

    Propagation of Gaussian Schell-model vortex beams in biological tissues

    No full text
    The dependence of changes in the relative intensity and the spectral degree of coherence on the refractive-index Cn2 of biological tissues, space correlation length σ0 and wavelength λ of the Gaussian Schell-model (GSM) vortex and non-vortex beams in biological tissues has been studied. It is shown that the intensity distribution of GSM vortex beams passing through the biological tissues undergoes several stages. The bigger Cn2 is, and the smaller σ0 is, the quicker the intensity evolution is. The attenuation of intensity for GSM vortex beams is much slower than that of non-vortex beams, thus the beam quality of the former is better than the latter. When propagating through the biological tissue, the phase singularities of GSM vortex beams will appear. As the propagation distance increases, the position of the phase singularities will shift, and these points will disappear where the changes in the spectral degree of coherence of GSM vortex beams are consistent with those of GSM non-vortex beams. At the same propagation distance, the bigger Cn2 is, and the smaller σ0 and λ are, the shorter the distance between the phase singularities and the z axis is, when the propagation distance z is in the range of 0–50 μm

    Optical trapping of the low index of refraction particles by focused vortex beams and two face-to-face focused beams

    No full text
    Using the extended Huygens–Fresnel principle and Rayleigh scattering theory, optical trapping of the low index of refraction particles using a focused Gaussian Schell-model (GSM) non-vortex beam, a focused GSM vortex beam, and two face-to-face focused GSM vortex beams have been studied. The results demonstrate that the focused GSM non-vortex beam cannot capture the low index of refraction particles, however, the focused GSM vortex beam can be a two-dimensional trap of particles in the z-axis, and the transverse gradient force Fgrad,x and the trapping equilibrium region increase as the topological charge m increases. As the focal length f or the refractive index of particles np decreases, the radiation forces increase and the trapping ability also enhances. To trap the low index particles in three-dimensional space, we adopt that the two face-to-face focused GSM vortex beams can be used to construct an optical potential well. The transverse gradient force of two face-to-face focused GSM vortex beams is twice that of a single GSM vortex beam. The limit of the radius for the low index of refraction particles that were stably captured has also been determined. The obtained results provide valuable information for trapping and manipulating the low index of refraction particles using GSM vortex beams, which may be applied in micromanipulation, biotechnology, nanotechnology and so on
    • …
    corecore