69 research outputs found
Skeleton-aided Articulated Motion Generation
This work make the first attempt to generate articulated human motion
sequence from a single image. On the one hand, we utilize paired inputs
including human skeleton information as motion embedding and a single human
image as appearance reference, to generate novel motion frames, based on the
conditional GAN infrastructure. On the other hand, a triplet loss is employed
to pursue appearance-smoothness between consecutive frames. As the proposed
framework is capable of jointly exploiting the image appearance space and
articulated/kinematic motion space, it generates realistic articulated motion
sequence, in contrast to most previous video generation methods which yield
blurred motion effects. We test our model on two human action datasets
including KTH and Human3.6M, and the proposed framework generates very
promising results on both datasets.Comment: ACM MM 201
When does aggregating multiple skills with multi-task learning work? A case study in financial NLP
Multi-task learning (MTL) aims at achieving a better model by leveraging data and knowledge from multiple tasks. However, MTL does not always work – sometimes negative transfer occurs between tasks, especially when aggregating loosely related skills, leaving it an open question when MTL works. Previous studies show that MTL performance can be improved by algorithmic tricks. However, what tasks and skills should be included is less well explored. In this work, we conduct a case study in Financial NLP where multiple datasets exist for skills relevant to the domain, such as numeric reasoning and sentiment analysis. Due to the task difficulty and data scarcity in the Financial NLP domain, we explore when aggregating such diverse skills from multiple datasets with MTL can work. Our findings suggest that the key to MTL success lies in skill diversity, relatedness between tasks, and choice of aggregation size and shared capacity. Specifically, MTL works well when tasks are diverse but related, and when the size of the task aggregation and the shared capacity of the model are balanced to avoid overwhelming certain tasks
Hypoxia-associated genes predicting future risk of myocardial infarction: a GEO database-based study
BackgroundPatients with unstable angina (UA) are prone to myocardial infarction (MI) after an attack, yet the altered molecular expression profile therein remains unclear. The current work aims to identify the characteristic hypoxia-related genes associated with UA/MI and to develop a predictive model of hypoxia-related genes for the progression of UA to MI.Methods and resultsGene expression profiles were obtained from the GEO database. Then, differential expression analysis and the WGCNA method were performed to select characteristic genes related to hypoxia. Subsequently, all 10 hypoxia-related genes were screened using the Lasso regression model and a classification model was established. The area under the ROC curve of 1 shows its excellent classification performance and is confirmed on the validation set. In parallel, we construct a nomogram based on these genes, showing the risk of MI in patients with UA. Patients with UA and MI had their immunological status determined using CIBERSORT. These 10 genes were primarily linked to B cells and some inflammatory cells, according to correlation analysis.ConclusionOverall, GWAS identified that the CSTF2F UA/MI risk gene promotes atherosclerosis, which provides the basis for the design of innovative cardiovascular drugs by targeting CSTF2F
chatClimate: Grounding conversational AI in climate science
Large Language Models (LLMs) have made significant progress in recent years, achieving remarkable results in question-answering tasks (QA). However, they still face two major challenges: hallucination and outdated information after the training phase. These challenges take center stage in critical domains like climate change, where obtaining accurate and up-to-date information from reliable sources in a limited time is essential and difficult. To overcome these barriers, one potential solution is to provide LLMs with access to external, scientifically accurate, and robust sources (long-term memory) to continuously update their knowledge and prevent the propagation of inaccurate, incorrect, or outdated information. In this study, we enhanced GPT-4 by integrating the information from the Sixth Assessment Report of the Intergovernmental (IPCC AR6), the most comprehensive, up-to-date, and reliable source in this domain. We present our conversational AI prototype, available at this http URL and demonstrate its ability to answer challenging questions accurately in three different QA scenarios: asking from 1) GPT-4, 2) chatClimate, and 3) hybrid chatClimate. The answers and their sources were evaluated by our team of IPCC authors, who used their expert knowledge to score the accuracy of the answers from 1 (very-low) to 5 (very-high). The evaluation showed that the hybrid chatClimate provided more accurate answers, highlighting the effectiveness of our solution. This approach can be easily scaled for chatbots in specific domains, enabling the delivery of reliable and accurate information
Paradigm shift in sustainability disclosure analysis: empowering stakeholders with CHATREPORT, a language model-based tool
This paper introduces a novel approach to enhance Large Language Models (LLMs) with expert knowledge to automate the analysis of corporate sustainability reports by benchmarking them against the Task Force for Climate-Related Financial Disclosures (TCFD) recommendations. Corporate sustainability reports are crucial in assessing organizations' environmental and social risks and impacts. However, analyzing these reports' vast amounts of information makes human analysis often too costly. As a result, only a few entities worldwide have the resources to analyze these reports, which could lead to a lack of transparency. While AI-powered tools can automatically analyze the data, they are prone to inaccuracies as they lack domain-specific expertise. This paper introduces a novel approach to enhance LLMs with expert knowledge to automate the analysis of corporate sustainability reports. We christen our tool CHATREPORT, and apply it in a first use case to assess corporate climate risk disclosures following the TCFD recommendations. CHATREPORT results from collaborating with experts in climate science, finance, economic policy, and computer science, demonstrating how domain experts can be involved in developing AI tools. We make our prompt templates, generated data, and scores available to the public to encourage transparency
CHATREPORT: Democratizing sustainability disclosure analysis through LLM-based tools
In the face of climate change, are companies really taking substantial steps toward more sustainable operations? A comprehensive answer lies in the dense, information-rich landscape of corporate sustainability reports. However, the sheer volume and complexity of these reports make human analysis very costly. Therefore, only a few entities worldwide have the resources to analyze these reports at scale, which leads to a lack of transparency in sustainability reporting. Empowering stakeholders with LLM-based automatic analysis tools can be a promising way to democratize sustainability report analysis. However, developing such tools is challenging due to (1) the hallucination of LLMs and (2) the inefficiency of bringing domain experts into the AI development loop. In this paper, we ChatReport, a novel LLM-based system to automate the analysis of corporate sustainability reports, addressing existing challenges by (1) making the answers traceable to reduce the harm of hallucination and (2) actively involving domain experts in the development loop. We make our methodology, annotated datasets, and generated analyses of 1015 reports publicly available
- …