9 research outputs found

    A Chip for Detecting Tuberculosis Drug Resistance Based on Polymerase Chain Reaction (PCR)-Magnetic Bead Molecule Platform

    Get PDF
    Objective: A Tag Array chip was used to detect plasmids of different template concentration, and then analyzed for sensitivity and specificity. Drug resistance genes from tuberculosis clinical specimens were detected, giving comparative phenotypic resistance results to explore the feasibility and value of clinical applications.Methods: Twenty-four strains of Mycobacterium Tuberculosis (MTB) having sequence differences in extracted plasmids of mutant strains. The plasmid was diluted into different concentrations, and then was performed to analyze the sensitivity and specificity of the chip system. A total of 427 clinical specimens (including spinal tuberculosis and pulmonary tuberculosis) were collected from patients who came from seven hospitals. Design, optimization and preparation of the chip detection system, sequencing and phenotypic drug susceptibility results were analyzed to evaluate the sensitivity and specificity of the gene chip.Results: In the template, concentrations of 1 × 103 copies/μL and above were consistent with sequencing results in the mutant. The sensitivity and specificity in spine Tuberculosis specimen of rifampicin (RFP) were 94.40 and 92.86%; isoniazide (INH) were 92.37 and 87.50%; ethambutol (EMB) were 61.36 and 89.29%; fluoroquinolones (FQS) were 79.41 and 92.86%; streptomycin (SM) were 90.18 and 89.29%; second line drugs (SLD) were 77.61 and 83.93%. In Pulmonary Tuberculosis specimen, the sensitivity and specificity respectively were RFP: 92.74%; 93.75%; INH: 91.26%; 87.50%; EMB: 54.17%; 89.58%; FQS: 84.87%; 93.75%; SM: 86.73%; 85.42%; SLD: 80.9%; 91.67%. The RFP, INH, FQs and SM resistance genes was highly sensitive and specific: however, for detection of amikacin (AMK), capreomycin (CPM), kanamycin (KM), specificity was higher, but sensitivity was lower. Sensitivity for the detection of a mutation in the eis promoter region could be improved.Conclusion: Tag Array chip can achieve rapid, accurate detection of tuberculosis resistance, which has important clinical significance and feasibility

    High Concentration of Aspirin Induces Apoptosis in Rat Tendon Stem Cells via Inhibition of the Wnt/β-Catenin Pathway

    Get PDF
    Background/Aims: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical practice to relieve fever and pain. Aspirin, as a representative NSAID, has been widely used in the treatment of tendinopathy. Some reports have demonstrated that aspirin can induce apoptosis in cancer cells. However, evidence regarding aspirin treatment for tendinopathy, especially the effect of this treatment on tendon stem cells (TSCs), is lacking. Understanding the effect of aspirin on tendinopathy may provide a basis for the rational use of NSAIDs in clinical practice. The aim of our study was to determine whether aspirin induces apoptosis in rat TSCs via the Wnt/β-catenin pathway. Methods: First, we used flow cytometry and fluorescence to detect TSC apoptosis. Protein expression of the apoptosis-related caspase-3 pathway was investigated via western blot analysis. Next, we used western blotting to determine the effect of aspirin on the Wnt/β-catenin pathway. We used immunostaining to detect the levels of Bcl2, cleaved caspase-3, and P-β-catenin in the Achilles tendon. Finally, we used flow cytometry, fluorescence, and western blotting to investigate the aspirin-induced apoptosis of TSCs via the Wnt/β-catenin pathway. Results: Aspirin induced morphological apoptosis in rat TSCs via the mitochondrial/caspase-3 pathway and induced cellular apoptosis in the Achilles tendon. Apoptosis was partly reversed after adding the Wnt signaling activator Wnt3a and lithium chloride (LiCl, a GSK-3β inhibitor). Aspirin administration led to a dose-dependent increase in COX-2 expression. Apoptosis was promoted after adding the COX-2 inhibitor NS398. Conclusion: The Wnt/β-catenin pathway plays a vital role in aspirin-induced apoptosis by regulating mitochondrial/caspase-3 function. Elevating COX-2 levels may protect cells against apoptosis. More importantly, the results remind us to consider the apoptotic effect of aspirin on TSCs and tendon cells when aspirin is administered to treat tendinopathy. The relationship between the positive and negative effects of aspirin remains a subject for future study

    Improvement in clinical outcome and infection control using molecular diagnostic techniques for early detection of MDR tuberculous spondylitis: a multicenter retrospective study

    No full text
    There has been limited research on the therapeutic efficacy of molecular diagnosis of spinal tuberculosis. We attempted to determine whether the utilization of molecular diagnosis to detect multidrug-resistant spinal tuberculosis can improve clinical outcomes. A multicenter retrospective study was conducted from February 2009 to June 2015. Ninety-two consecutive culture-confirmed multidrug-resistant tuberculosis (MDR-TB) patients with spinal tuberculosis who were diagnosed clinically and by imaging were enrolled in the study. The initial time to treatment for MDR-TB, the method of infection control, the erythrocyte sedimentation rate (ESR) and the occurrence of complications in patients who were diagnosed using molecular methods were compared with those of patients diagnosed using standard culture and drug susceptibility test methods. Of 92 MDR-TB patients with spinal tuberculosis, 41 (45%) were diagnosed by standard culture and drug susceptibility test methods (Group A), and 51 (55%) were diagnosed following implementation of detection using molecular diagnosis (Group B). The patients in Group B began the rational use of second-line drugs earlier than patients in Group A (5 days vs 73 days, P<0.05). Among patients who were admitted to a general tuberculosis ward, those in Group B spent less time in the ward than those in Group A (4 days vs 33 days, P<0.05). At the one-month follow-up, the ESR was significantly lower in Group B. In patients who completed 6 months of follow-up (n=92), the incidence of complications was significantly lower in Group B. The use of molecular diagnosis resulted in noteworthy clinical advances, including earlier initiation of MDR-TB treatment, improved infection control, better clinical outcome, a more rapid decrease in ESR and fewer complications.Emerging Microbes & Infections (2017) 6, e97; doi:10.1038/emi.2017.83; published online 8 November 201

    Single-stage posterior debridement, decompression and transpedicular screw fixation for the treatment of thoracolumbar junction (T12-L1) tuberculosis with associated neurological deficit: a multicentre retrospective study

    No full text
    Abstract Background A multicentre retrospective study was conducted to evaluate the safety and efficacy of single-stage posterior debridement, decompression and transpedicular screw fixation for the treatment of thoracolumbar junction (T12-L1) tuberculosis in patients with associated neurological deficit. Methods Thoracolumbar junction (T12-L1) tuberculosis patients (n = 69) with neurological deficit who underwent single-stage posterior debridement, decompression and transpedicular screw fixation from January 2005 to January 2015 were included in the study. Antituberculosis therapy was performed both before and after surgery. The surgery duration and patient blood loss were evaluated, in addition to the change in pain visual analogue score (pVAS), kyphotic angle, Oswestry disability index (ODI) score and American Spinal Injury Association (ASIA) grade assessed preoperatively, immediate postoperatively and at the final follow-up visit. Results The average blood loss was 354 ± 291 mL. The average kyphosis angle was corrected from 21 ± 9° preoperatively to 9 ± 4° postoperatively, with a mean decrease in pVAS and ODI scores of 3.4 and 16, respectively. The postoperative ASIA grading was grade A for five patients, grade C for 15 and grade D for 49 patients, which had improved to grade C for four patients, grade D for three patients and grade E for 62 patients at the final follow-up. The neurological deficit did not worsen in any of the patients. Conclusions Single-stage posterior debridement, decompression and transpedicular screw fixation is an effective treatment method in thoracolumbar junction (T12-L1) tuberculosis patients with neurological deficit, with good neurological recovery and no progression of kyphosis
    corecore