25 research outputs found

    Current jets, disorder, and linear magnetoresistance in the silver chalcogenides

    Get PDF
    The inhomogeneous distribution of excess or deficient silver atoms lies behind the large and linear transverse magnetoresistance displayed by Ag_(2±δ)Se and Ag_(2±δ)Te, introducing spatial conductivity fluctuations with length scales independent of the cyclotron radius. We report a negative, nonsaturating longitudinal magnetoresistance up to at least 60 T, which becomes most negative where the bands cross and the effect of conductivity fluctuations is most acute. Thinning samples down to 10   μm suppresses the negative response, revealing the essential length scale in the problem and paving the way for designer magnetoresistive devices

    The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures

    Get PDF
    Quantum dots in Si/SiGe heterostructures are expected to have relatively long electron spin decoherence times, because of the low density of nuclear spins and the weak coupling between nuclear and electron spins. We provide experimental evidence suggesting that electron motion in a conductive layer parallel to the two-dimensional electron gas, possibly resulting from the donors used to dope the Si quantum well, is responsible for the well-known difficulty in achieving well-controlled dots in this system. Charge motion in the conductive layer can cause depletion on large length scales, making electron confinement in the dot impossible, and can give rise to noise that can overwhelm the single-electron charging signal. Results of capacitance versus gate bias measurements to characterize this conductive layer are presented.National Science Foundation (U.S.) ((PHY-0117795)National Science Foundation (U.S.) (DMR-0701386

    Non-saturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation

    Get PDF
    The silver chalcogenides provide a striking example of the benefits of imperfection. Nanothreads of excess silver cause distortions in the current flow that yield a linear and non-saturating transverse magnetoresistance (MR). Associated with the large and positive MR is a negative longitudinal MR. The longitudinal MR only occurs in the three-dimensional limit and thereby permits the determination of a characteristic length scale set by the spatial inhomogeneity. We find that this fundamental inhomogeneity length can be as large as ten microns. Systematic measurements of the diagonal and off-diagonal components of the resistivity tensor in various sample geometries show clear evidence of the distorted current paths posited in theoretical simulations. We use a random resistor network model to fit the linear MR, and expand it from two to three dimensions to depict current distortions in the third (thickness) dimension. When compared directly to experiments on Ag2±δ_{2\pm\delta}Se and Ag2±δ_{2\pm\delta}Te, in magnetic fields up to 55 T, the model identifies conductivity fluctuations due to macroscopic inhomogeneities as the underlying physical mechanism. It also accounts reasonably quantitatively for the various components of the resistivity tensor observed in the experiments.Comment: 10 pages, 7 figure

    Case Report: HAVCR2 mutation-associated Hemophagocytic lymphohistiocytosis

    Get PDF
    Germline HAVCR2 mutation has been reported to be associated with subcutaneous panniculitis-like T-cell lymphoma (SPTCL) leading to Hemophagocytic lymphohistiocytosis (HLH). Several studies have indicated that HAVCR2 mutation can cause HLH even in the absence of lymphoma, though the exact mechanism remains unclear. In this article, we reported five cases of HAVCR2 mutation-associated HLH. Our analysis revealed an elevated level of IL-1RA in the serum of these patients. Furthermore, we investigated the potential mechanisms underlying HLH associated with HAVCR2 mutation based on changes in cytokine levels. Our findings suggest that HAVCR2 mutation may represent a distinct genetic defect underlying HLH, differing from traditional primary HLH

    Dendritic Cell Mediated Delivery of Plasmid DNA Encoding LAMP/HIV-1 Gag Fusion Immunogen Enhances T Cell Epitope Responses in HLA DR4 Transgenic Mice

    Get PDF
    This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d) and HLA-DR4 (DRA1*0101, DRB1*0401) transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag) chimera antigen. Three immunization protocols were compared: 1) primary subcutaneous immunization with 1×105 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2) primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3) immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-γ ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a) the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b) the value of HLA transgenic mice as a model system for the identification and evaluation of epitope-based vaccine strategies, and c) the application of variability analysis across reported sequences in public databases for selection of historically conserved HIV epitopes as vaccine targets

    Sequential tunneling and inelastic cotunneling in nanoparticle arrays

    Get PDF
    We investigate transport in weakly coupled metal nanoparticle arrays, focusing on the regime where tunneling is competing with strong single electron charging effects. This competition gives rise to an interplay between two types of charge transport. In sequential tunneling, transport is dominated by independent electron hops from a particle to its nearest neighbor along the current path. In inelastic cotunneling, transport is dominated by cooperative multielectron hops that each go to the nearest neighbor but are synchronized to move charge over distances of several particles. In order to test how the temperature-dependent cotunnel distance affects the current-voltage (I-V) characteristics, we perform a series of systematic experiments on highly ordered close-packed nanoparticle arrays. The arrays consist of ∼5.5 nm diameter gold nanocrystals with tight size dispersion, spaced ∼1.7 nm apart by interdigitating shells of dodecanethiol ligands. We present I-V data for monolayer, bilayer, trilayer, and tetralayer arrays. For stacks 2–4 layers thick we compare in-plane measurements with data for vertical transport perpendicular to the array plane. Our results support a picture whereby transport inside the Coulomb blockade regime occurs by inelastic cotunneling, while sequential tunneling takes over at large bias above the global Coulomb blockade threshold Vt(T) and at high temperatures. For the smallest measurable voltages, our data was fitted well by recent predictions for the temperature dependence zero-bias conductance due to multiple cotunneling. At finite but small bias, the cotunnel distance is predicted to set the curvature of the nonlinear I-V characteristics, in good agreement with our data. The absence of significant magnetic-field dependence up to 10 T in the measured I-V characteristics further supports the picture of inelastic cotunneling events where individual electrons hop no further than the nearest neighbor. At large bias, above the global Coulomb blockade threshold, the I-V characteristics follow power-law behavior with temperature-independent exponent close to two, predicted for sequential tunneling along branching paths that optimize the overall charging energy cost

    Classical and quantum routes to linear magnetoresistance

    No full text
    The hallmark of materials science is the ability to tailor the microstructure of a given material to provide a desired response. Carbon mixed with iron provides the steel of buildings and bridges; impurities sprinkled in silicon single crystals form the raw materials of the electronics revolution; pinning centres in superconductors let them become powerful magnets. Here, we show that either adding a few parts per million of the proper chemical impurities to indium antimonide, a well-known semiconductor, or redesigning the material's structure on the micrometre scale, can transform its response to an applied magnetic field. The former approach is purely quantum mechanical; the latter a classical outgrowth of disorder, turned to advantage. In both cases, the magnetoresistive response-at the heart of magnetic sensor technology-can be converted to a simple, large and linear function of field that does not saturate. Harnessing the effects of disorder has the further advantage of extending the useful applications range of such a magnetic sensor to very high temperatures by circumventing the usual limitations imposed by phonon scattering
    corecore