52 research outputs found

    Pharmacological mechanisms of Ma Xing Shi Gan Decoction in treating influenza virus-induced pneumonia: intestinal microbiota and pulmonary glycolysis

    Get PDF
    BackgroundInfluenza virus is one of the most common pathogens that cause viral pneumonia. During pneumonia, host immune inflammation regulation involves microbiota in the intestine and glycolysis in the lung tissues. In the clinical guidelines for pneumonia treatment in China, Ma Xing Shi Gan Decoction (MXSG) is a commonly prescribed traditional Chinese medicine formulation with significant efficacy, however, it remains unclear whether its specific mechanism of action is related to the regulation of intestinal microbiota structure and lung tissue glycolysis.ObjectiveThis study aimed to investigate the mechanism of action of MXSG in an animal model of influenza virus-induced pneumonia. Specifically, we aimed to elucidate how MXSG modulates intestinal microbiota structure and lung tissue glycolysis to exert its therapeutic effects on pneumonia.MethodsWe established a mouse model of influenza virus-induced pneumoni, and treated with MXSG. We observed changes in inflammatory cytokine levels and conducted 16S rRNA gene sequencing to assess the intestinal microbiota structure and function. Additionally, targeted metabolomics was performed to analyze lung tissue glycolytic metabolites, and Western blot and enzyme-linked immunosorbent assays were performed to assess glycolysis-related enzymes, lipopolysaccharides (LPSs), HIF-1a, and macrophage surface markers. Correlation analysis was conducted between the LPS and omics results to elucidate the relationship between intestinal microbiota and lung tissue glycolysis in pneumonia animals under the intervention of Ma Xing Shi Gan Decoction.ResultsMXSG reduced the abundance of Gram-negative bacteria in the intestines, such as Proteobacteria and Helicobacter, leading to reduced LPS content in the serum and lungs. This intervention also suppressed HIF-1a activity and lung tissue glycolysis metabolism, decreased the number of M1-type macrophages, and increased the number of M2-type macrophages, effectively alleviating lung damage caused by influenza virus-induced pneumonia.ConclusionMXSG can alleviate glycolysis in lung tissue, suppress M1-type macrophage activation, promote M2-type macrophage activation, and mitigate inflammation in lung tissue. This therapeutic effect appears to be mediated by modulating gut microbiota and reducing endogenous LPS production in the intestines. This study demonstrates the therapeutic effects of MXSG on pneumonia and explores its potential mechanism, thus providing data support for the use of traditional Chinese medicine in the treatment of respiratory infectious diseases

    Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to "druggable" target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ⁷⁰ (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. METHODOLOGY/PRINCIPAL FINDINGS: By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)₃K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ⁷⁰ in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ⁷⁰ were observed for 40 µM or 12.5 µM PPNA2332 treatment, respectively, but not for 40 µM Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≥1 µM) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 µM. CONCLUSIONS: The present result suggested that RNAP primary σ⁷⁰ is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections

    All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% (vol 9, 4544, 2018)

    No full text
    In the original version of this Article, the author name ‘Shengzhong Liu’ was incorrectly given as ‘Liu Shengzhong’. This has been corrected in both the PDF and HTML versions of the Article

    Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbl(2)Br Solar Cells

    No full text
    It is imperative to develop a large-aspect-ratio grain-based thin film with low trap density for high-performance inorganic perovskite CsPbI2Br solar cells. Herein, by using Mn2+ ion doping to modulate film growth, we achieved CsPbI2Br grains with aspect ratios as high as 8. It is found that Mn2+ ions insert into the interstices of the CsPbI2Br lattice during the growth process, leading to suppressed nucleation and a decreased growth rate. The combination aids in the achievement of larger CsPbI2Br crystalline grains for increased J(SC) values as high as 14.37 mA/cm(2) and FFs as large as 80.0%. Moreover, excess Mn2+ ions passivate the grain boundary and surface defects, resulting in effectively decreased recombination loss with improved hole extraction efficiency, which enhances the built-in electric field and hence increases V-OC to 1.172 V. As a result, the champion device achieves stabilized efficiency as high as 13.47%, improved by 13% compared with only 11.88% for the reference device

    Isolation and Identification of Aeromonas veronii in Sheep with Fatal Infection in China: A Case Report

    No full text
    According to the findings of a sheep breeding farm in Shaanxi, China, 2.53% (15/594) of sheep exhibited respiratory (clinical) symptoms such as dyspnoea, nasal discharge, wet cough, fever, and progressive emaciation. Although multi-drug treatment strategies (including ampicillin, tylosin, florfenicol, and ceftiofur) have been attempted to improve clinical outcomes, they have only been met with limited success, with a mortality rate of 40%. Ultimately, Aeromonas veronii (A. veronii) was identified as the causative pathogen for respiratory disease. The rates of symptomatic and asymptomatic sheep positive to A. veronii were 64.28% (95% CI 52.25–76.31%) and 8.02% (95% CI 6.96–9.08%), respectively. Pathogenicity tests demonstrated that the A. veronii is pathogenic to sheep and mice. The results of the antibiotic susceptibility tests revealed that the strain was sensitive to cefotaxime, gentamicin, and enrofloxacin and resistant to ampicillin, ceftiofur, amoxicillin, kanamycin, neomycin, streptomycin, tetracycline, florfenicol, and tylosin. We suggest that the combination of cefotaxime and gentamicin is an effective treatment based on the results of an antimicrobial susceptibility test, which exhibited good therapeutic efficacy. To the best of our knowledge, this is the first report in which pathogenic A. veronii has been documented as the cause of death in sheep in China. We concluded that pathogenic A. veronii poses a potential risk to the industry of sheep husbandry. This study’s findings can help guide prevention and treatment plans for A. veronii infection in sheep

    All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%

    No full text
    As the black cesium lead iodide (CsPbI3) tends to transit into a yellow d-phase at ambient, it is imperative to develop a stabilized black phase for photovoltaic applications. Herein, we report a distorted black CsPbI3 film by exploiting the synergistic effect of hydroiodic acid (HI) and phenylethylammonium iodide (PEAI) additives. It is found that the HI induces formation of hydrogen lead iodide (HPbI3+x), an intermediate to the distorted black phase with appropriate band gap of 1.69 eV; while PEAI provides nucleation for optimized crystallization. More importantly, it stabilizes the distorted black phase by hindering phase transition via its steric effects. Upon optimization, we have attained solar cell efficiency as high as 15.07%. Specifically, the bare cell without any encapsulation shows negligible efficiency loss after 300 h of light soaking. The device keeps 92% of its initial cell efficiency after being stored for 2 months under ambient conditions

    Isolation and Identification of <i>Aeromonas veronii</i> in Sheep with Fatal Infection in China: A Case Report

    No full text
    According to the findings of a sheep breeding farm in Shaanxi, China, 2.53% (15/594) of sheep exhibited respiratory (clinical) symptoms such as dyspnoea, nasal discharge, wet cough, fever, and progressive emaciation. Although multi-drug treatment strategies (including ampicillin, tylosin, florfenicol, and ceftiofur) have been attempted to improve clinical outcomes, they have only been met with limited success, with a mortality rate of 40%. Ultimately, Aeromonas veronii (A. veronii) was identified as the causative pathogen for respiratory disease. The rates of symptomatic and asymptomatic sheep positive to A. veronii were 64.28% (95% CI 52.25–76.31%) and 8.02% (95% CI 6.96–9.08%), respectively. Pathogenicity tests demonstrated that the A. veronii is pathogenic to sheep and mice. The results of the antibiotic susceptibility tests revealed that the strain was sensitive to cefotaxime, gentamicin, and enrofloxacin and resistant to ampicillin, ceftiofur, amoxicillin, kanamycin, neomycin, streptomycin, tetracycline, florfenicol, and tylosin. We suggest that the combination of cefotaxime and gentamicin is an effective treatment based on the results of an antimicrobial susceptibility test, which exhibited good therapeutic efficacy. To the best of our knowledge, this is the first report in which pathogenic A. veronii has been documented as the cause of death in sheep in China. We concluded that pathogenic A. veronii poses a potential risk to the industry of sheep husbandry. This study’s findings can help guide prevention and treatment plans for A. veronii infection in sheep
    corecore