94 research outputs found

    Vibration-based damage growth monitoring in beam-like structures

    Get PDF
    Damage growth monitoring plays an important role in providing early warning of structural failure. The existing methods for damage growth monitoring are mainly local inspection methods, such as acoustic emission. These methods need a priori knowledge of accessible damage vicinity, which may not be realized in practice. Hence, vibration-based global approach is adopted to overcome these difficulties. Natural frequency, as a global modal parameter, can be measured easily and is used for vibration-based damage growth monitoring in this study. A concept of damage-induced relative natural frequency change (RNFC) curve is defined first and its relation with mode shape is then derived analytically, giving a good way to approximate RNFC curves. For monitoring damage growth, a damage growth indicator is proposed based on RNFCs between two damaged stages of a beam. The effectiveness of the indicator for damage growth monitoring is proved by both numerical and experimental cases in beam-like structures

    Geological characterization of a lower Cambrian marine shale: implications for shale gas potential in North-Western Hunan, South China

    Get PDF
    We have investigated the geologic features of the lower Cambrian-aged Niutitang Shale in the northwestern Hunan province of South China. Our results indicate that the Niutitang Shale has abundant and highly mature algal kerogen with total organic carbon (TOC) content ranging from 0.6% to 18.2%. The equivalent vitrinite reflectance (equal-Ro) value is between 2.5% and 4.3%. Mineral constituents are dominated by quartz and clay. The average quartz content (62.8%) is much higher than that of clay minerals (26.1%), and this suggests a high brittleness index. Organic-matter pores, interparticle pores, intraparticle pores, interlaminated fractures, and structural fractures are all well developed. The porosity ranges from 0.6% to 8.8%, with an average of 4.8%, whereas the permeability varies from 0.0018 to [Formula: see text] (microdarcy) (averaging [Formula: see text]). The porosity of TOC- and clay-rich shale samples is generally higher than that of quartz-rich shale samples. The gas adsorption capacity of the Niutitang Shale varies from 2.26 to [Formula: see text], with a mean value of [Formula: see text]. The TOC content appears to significantly influence gas adsorption capacity. In general, TOC-rich samples exhibit a much higher adsorption capacity than TOC-poor samples. </jats:p

    Pretracheal Lymph Node Subdivision in Predicting Contralateral Central Lymph Node Metastasis for Unilateral Papillary Thyroid Carcinoma: Preliminary Results

    Get PDF
    BackgroundThe aims of this study were to assess the clinical value of pretracheal lymph node subdivision in identifying patients with contralateral central lymph node metastasis (CLNM) and risk factors for occult contralateral CLNM in unilateral PTC.MethodsA total of 139 unilateral PTC patients with a clinically node-negative neck (cN0) who underwent bilateral central neck dissection (CND) were prospectively enrolled. Intraoperatively, the pretracheal region was further divided into ipsilateral and contralateral subregions. Ipsilateral and contralateral pretracheal lymph nodes (LNs) as well as other CLNs (prelaryngeal, ipsilateral paratracheal and contralateral paratracheal) were labeled separately and sent for pathological examination. Demographic and clinicopathologic variables were analyzed to identify factors predictive of contralateral CLNM.ResultsOf 139 patients, bilateral CLNM was present in 37 (26.6%) patients. Contralateral pretracheal LNM was significantly associated with contralateral CLNM. In multivariate analysis, prelaryngeal LNM (P = 0.004, odds ratio = 3.457) and contralateral pretracheal LNM (P = 0.006, odds ratio = 3.362) were identified as risk factors for contralateral CLNM. Neither neck recurrence nor distant metastasis was observed within the mean follow-up duration of 9.1 ± 1.8 months.ConclusionsIn most unilateral cN0 PTCs, performing ipsilateral CND is appropriate, while patients presenting with evident nodal disease intraoperatively or preoperatively in the contralateral central neck should undergo bilateral CND. Intraoperative re-evaluation of prelaryngeal and contralateral pretracheal LNs may be helpful in determining the extent of CND

    Prediction of the shear wave speed of seafloor sediments in the northern South China Sea based on an XGBoost algorithm

    Get PDF
    Based on data on the shear wave speed and physical properties of the shallow sediment samples collected in the northwest South China Sea, the hyperparameter selection and contribution of the characteristic factors of the machine learning model for predicting the shear wave speed of seafloor sediments were studied using the eXtreme Gradient Boosting (XGBoost) algorithm. An XGBoost model for predicting the shear wave speed of seafloor sediments was established based on four physical parameters of the sediments: porosity (n), water content (w), density (ρ), and average grain size (MZ). The result reveals that: (1) The shear wave speed has a good correlation with n, w, ρ, and MZ, and their Pearson correlation coefficients are all above 0.75, indicating that they can be used as the suitable characteristic parameters for predicting the shear wave speed based on the XGBoost model; (2) When the number of weak learners (n_estimators) is 115 and the maximum depth of the tree (max_depth) is 6, the XGBoost model has a very high goodness of fit (R2) of the validation data of 0.914, the very low mean absolute error (MAE) and mean absolute percentage error (MAPE) of the predicted shear wave speed are 3.366 m/s and 9.90%, respectively; (3) Compared with grain-shearing (GS) model and single- and dual-parameter regression equation prediction models, the XGBoost model for the shear wave speed of seafloor sediments has higher fitting goodness and lower prediction error

    Effect of Water Saturation on Gas-Accessible Effective Pore Space in Gas Shales

    Get PDF
    AbstractThe existence and content of water will certainly affect the effective pore space of shales and therefore is a key point for the evaluation of in-situ gas content and gas flow capacity of shale reservoirs. In order to reasonably evaluate the gas storage and flow capacities of water-bearing shale reservoirs, the effect of water on the effective pore space of shales needs to be understood. In this study, the Upper Permian Longtan shale in the southeastern Sichuan Basin, China, was selected as an example to conduct nuclear magnetic resonance cryoporometry (NMRC) measurements under different water saturation levels. The gas-accessible effective pore spaces in shales under different water saturation levels were quantified, and the effect of water saturation on gas-accessible effective pore space in shales was investigated. The results show that water plays an important role in the gas-accessible effective pore space of shales. When the Longtan shale increases from a dry state to a water saturation of 65%, 75%, and 90%, the gas-accessible effective pore volume decreases by 35%-60% (average 46.3%), 50%-70% (average 58.8%), and 65%-82% (average 75.8%), respectively. Water has an effect on the gas-accessible effective pore space regardless of pore size, and the effect is the strongest in the 4-100 nm range, which may be mainly due to the high content of clay minerals in the Longtan shale. Our studies are of important theoretical significance and application prospects for accurately evaluating the gas-accessible effective pore space of gas shales under actual geological conditions

    The Epitope Study on the SARS-CoV Nucleocapsid Protein

    Get PDF
    The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS

    Metagenomic Sequencing From Mosquitoes in China Reveals a Variety of Insect and Human Viruses

    Get PDF
    We collected 8,700 mosquitoes in three sites in China, which belonged to seven species. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The abundant viral sequences were detected and annotated belonging to more than 50 viral taxonomic families. The results were verified by PCR, followed by phylogenetic analysis. In the present study, we identified partial viral genes of dengue virus (DENV), a novel circovirus (CCV), densovirus (DNV), Japanese encephalitis virus (JEV), and Wuhan mosquito virus (WMV) in mosquitoes. Metagenomic analysis and PCR amplification revealed three DENV sequences, which were as homologous to the NS3 gene of DENV from Singapore isolated in 2005, with at least 91% nucleotide (nt) identity. Seven fragments of JEV encoding structural proteins were identified belonging to genotype I. They all shared high homology with structural protein genes of JEV isolated from Laos in 2009. The production of infectious virus particles of the newly isolated virus YunnanJEV2017-4 increased after passage from the BHK-21 cell line to the Vero cell line. Novel circovirus-related genes were identified and as being related to an unnamed gene of a mosquito circovirus (MCCV) sequence from the USA isolated in 2011, with at least 41% nt identity: this distant relationship suggests that the parent virus might belong to a novel circovirus genus. Additionally, numerous known viruses and some unknown viruses were also detected in mosquitoes from Yunnan province, China, which will be tested for propagation
    corecore