65 research outputs found

    Saikosaponin A Alleviates Symptoms of Attention Deficit Hyperactivity Disorder through Downregulation of DAT and Enhancing BDNF Expression in Spontaneous Hypertensive Rats

    Get PDF
    The disturbed dopamine availability and brain-derived neurotrophic factor (BDNF) expression are due in part to be associated with attention deficit hyperactivity disorder (ADHD). In this study, we investigated the therapeutical effect of saikosaponin a (SSa) isolated from Bupleurum Chinese DC, against spontaneously hypertensive rat (SHR) model of ADHD. Methylphenidate and SSa were orally administered for 3 weeks. Activity was assessed by open-field test and Morris water maze test. Dopamine (DA) and BDNF were determined in specific brain regions. The mRNA or protein expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicles monoamine transporter (VMAT) was also studied. Both MPH and SSa reduced hyperactivity and improved the spatial learning memory deficit in SHRs. An increased DA concentration in the prefrontal cortex (PFC) and striatum was also observed after treating with the SSa. The increased DA concentration may partially be attributed to the decreased mRNA and protein expression of DAT in PFC while SSa exhibited no significant effects on the mRNA expression of TH and VMAT in PFC of SHRs. In addition, BDNF expression in SHRs was also increased after treating with SSa or MPH. The obtained result suggested that SSa may be a potential drug for treating ADHD

    Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    Get PDF
    Two-photon Rabi splitting in a cavity-dot system provides a basis for multi-qubit coherent control in quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high quality factor photonic crystal cavity with large coupling strengths over 130 μ\mueV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby two-photon Rabi splitting between biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.Comment: 12 pages, 4 figure

    Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation

    Get PDF
    Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity–quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210     μ eV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation
    • …
    corecore