30 research outputs found

    Functional application of noble metal nanoparticles in situ synthesized on ramie fibers

    Full text link
    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers

    Medium optimization for Chlorella zofingiensis biomass production using central composite design

    No full text
    Fertilizers are major raw materials for microalgae cultivation. This study aims to reduce the cost of fertilizers and to enhance economic viability. The focus is on urea, potassium dihydrogen phosphate, and heptahydrate magnesium sulfate, which provide the main elements for algae cultivation. A central composite design was applied to optimize the medium for Chlorella zofingiensis cultivation, which was considered to be a potential feedstock for biodiesel production. The optimal concentrations were 533.31 mg L-1 urea, 69.50 mg L-1 potassium dihydrogen phosphate, and 69.10 mg L-1 heptahydrate magnesium sulfate, and the corresponding biomass concentration of C. zofingiensis was 2.50 g L-1 after a 3-day culture

    Neonatal Meningitis-Causing <i>Escherichia coli</i> Induces Microglia Activation which Acts as a Double-Edged Sword in Bacterial Meningitis

    No full text
    Bacterial meningitis is a devastating disease occurring worldwide, with up to half of survivors left with permanent neurological sequelae. Neonatal meningitis-causing Escherichia coli (NMEC) is the most common Gram-negative bacillary organism that causes meningitis, particularly during the neonatal period. Here, RNA-seq transcriptional profiles of microglia in response to NMEC infection show that microglia are activated to produce inflammatory factors. In addition, we found that the secretion of inflammatory factors is a double-edged sword that promotes polymorphonuclear neutrophil (PMN) recruitment to the brain to clear the pathogens but, at the same time, induces neuronal damage, which may be related to the neurological sequelae. New neuroprotective therapeutic strategies must be developed for the treatment of acute bacterial meningitis. We found that transforming growth factor-β (TGF-β) may be a strong candidate in the treatment of acute bacterial meningitis, as it shows a therapeutic effect on bacterial-meningitis-induced brain damage. Prevention of disease and early initiation of the appropriate treatment in patients with suspected or proven bacterial meningitis are the key factors in reducing morbidity and mortality. Novel antibiotic and adjuvant treatment strategies must be developed, and the main goal for new therapies will be dampening the inflammatory response. Based on this view, our findings may help develop novel strategies for bacterial meningitis treatment

    Water-saving analysis on an effective water reuse system in biodiesel feedstock production based on Chlorella zofingiensis fed-batch cultivation

    No full text
    The micralgae-based biofuel obtained from dairy wastewater (DWW) is considered a promising source of energy. However, this process consumes water due to the concentration of wastewater being normally too high for some micoralgae cultivation, and dilution is always needed. In this work, the cultivation of microalgae has been examined in non-recirculated water (NR) and recirculated water systems (R). The growth of Chlorella zofingiensis and the nutrient removal of DWW have been recorded. The comparison indicates the R had a little more advantage in biomass and lipid output (1.55, 0.22 g, respectively) than the NR (1.51, 0.20 g, respectively). However, the total chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) removals of the R were lower than those of the NR system during the culture. The highest removal of total COD, TKN, and TP were 85.05%, 93.64%, and 98.45%, respectively. Furthermore, no significant difference has been observed in the higher heating value and lipid content of the biomass of the R and NR. The results show the R can save 30% of the total water input during the culture. All above results indicate the R system has great potential in industry

    Functionalization of bamboo pulp fabrics with noble metal nanoparticles

    Full text link
    Noble metal (gold and silver) nanoparticles (NPs) were synthesized in-situ on bamboo pulp fabrics. The gold NPs were reduced by bamboo pulp fabrics and bonded to fibers under heating, and an alkaline condition was needed to synthesize silver NPs in the presence of bamboo pulp fabrics. The synthesized gold and silver NPs endowed bamboo pulp fabrics with different colors because of their localized surface plasmon resonance (LSPR) property. The colors of the fabrics treated with metal NPs were extended through complex synthesis of gold and silver NPs in different proportions. The bamboo pulp fabrics treated with noble metal NPs showed good fastness to light and rubbing. In addition, the gold and silver NPs imparted bamboo pulp fabrics excellent UV protection property and remarkable antibacterial activity

    Cultivation of Chlorella vulgaris in Dairy Wastewater Pretreated by UV Irradiation and Sodium Hypochlorite

    No full text
    There is potential in the utilization of microalgae for the purification of wastewater as well as recycling the resource in the wastewater to produce biodiesel. The large-scale cultivation of microalgae requires pretreatment of the wastewater to eliminate bacteria and protozoa. This procedure is costly and complex. In this study, two methods of pretreatment, UV irradiation, and sodiumhypochlorite (NaClO), in various doses and concentrations, were tested in the dairy wastewater. Combining the efficiency of biodiesel production, we proposed to treat the dairy wastewater with NaClO in the concentration of 30 ppm. In this condition, The highest biomass productivity and lipid productivity of Chlorella vulgaris reached 0.450 g L-1 day(-1) and 51 mg L-1 day(-1) after a 4-day cultivation in the dairy wastewater, respectively

    Comparison of prostate volume measured by transabdominal ultrasound and MRI with the radical prostatectomy specimen volume: a retrospective observational study

    No full text
    Abstract Background Few studies have compared the use of transabdominal ultrasound (TAUS) and magnetic resonance imaging (MRI) to measure prostate volume (PV). In this study, we evaluate the accuracy and reliability of PV measured by TAUS and MRI. Methods A total of 106 patients who underwent TAUS and MRI prior to radical prostatectomy were retrospectively analyzed. The TAUS-based and MRI-based PV were calculated using the ellipsoid formula. The specimen volume measured by the water-displacement method was used as a reference standard. Correlation analysis and intraclass correlation coefficients (ICC) were performed to compare different measurement methods and Bland Altman plots were drawn to assess the agreement. Results There was a high degree of correlation and agreement between the specimen volume and PV measured with TAUS (r = 0.838, p < 0.01; ICC = 0.83) and MRI (r = 0.914, p < 0.01; ICC = 0.90). TAUS overestimated specimen volume by 2.4ml, but the difference was independent of specimen volume (p = 0.19). MRI underestimated specimen volume by 1.7ml, the direction and magnitude of the difference varied with specimen volume (p < 0.01). The percentage error of PV measured by TAUS and MRI was within ± 20% in 65/106(61%) and 87/106(82%), respectively. In patients with PV greater than 50 ml, MRI volume still correlated strongly with specimen volume (r = 0.837, p < 0.01), while TAUS volume showed only moderate correlation with specimen (r = 0.665, p < 0.01) or MRI volume (r = 0.678, p < 0.01). Conclusions This study demonstrated that PV measured by MRI and TAUS is highly correlated and reliable with the specimen volume. MRI might be a more appropriate choice for measuring the large prostate
    corecore