170 research outputs found
On Rearrangement of Items Stored in Stacks
There are stacks, each filled with items, and one empty stack.
Every stack has capacity . A robot arm, in one stack operation (step),
may pop one item from the top of a non-empty stack and subsequently push it
onto a stack not at capacity. In a {\em labeled} problem, all items are
distinguishable and are initially randomly scattered in the stacks. The
items must be rearranged using pop-and-pushs so that in the end, the stack holds items , in that order, from the top to
the bottom for all . In an {\em unlabeled} problem, the
items are of types of each. The goal is to rearrange items so that
items of type are located in the stack for all . In carrying out the rearrangement, a natural question is to find the least
number of required pop-and-pushes.
Our main contributions are: (1) an algorithm for restoring the order of
items stored in an table using only column and row
permutations, and its generalization, and (2) an algorithm with a guaranteed
upper bound of steps for solving both versions of the stack
rearrangement problem when for arbitrary fixed
positive number . In terms of the required number of steps, the labeled and
unlabeled version have lower bounds
and , respectively
Persistent Monitoring of Events with Stochastic Arrivals at Multiple Stations
This paper introduces a new mobile sensor scheduling problem, involving a
single robot tasked with monitoring several events of interest that occur at
different locations. Of particular interest is the monitoring of transient
events that can not be easily forecast. Application areas range from natural
phenomena ({\em e.g.}, monitoring abnormal seismic activity around a volcano
using a ground robot) to urban activities ({\em e.g.}, monitoring early
formations of traffic congestion using an aerial robot). Motivated by those and
many other examples, this paper focuses on problems in which the precise
occurrence times of the events are unknown {\em a priori}, but statistics for
their inter-arrival times are available. The robot's task is to monitor the
events to optimize the following two objectives: {\em (i)} maximize the number
of events observed and {\em (ii)} minimize the delay between two consecutive
observations of events occurring at the same location. The paper considers the
case when a robot is tasked with optimizing the event observations in a
balanced manner, following a cyclic patrolling route. First, assuming the
cyclic ordering of stations is known, we prove the existence and uniqueness of
the optimal solution, and show that the optimal solution has desirable
convergence and robustness properties. Our constructive proof also produces an
efficient algorithm for computing the unique optimal solution with time
complexity, in which is the number of stations, with time
complexity for incrementally adding or removing stations. Except for the
algorithm, most of the analysis remains valid when the cyclic order is unknown.
We then provide a polynomial-time approximation scheme that gives a
-optimal solution for this more general, NP-hard problem
- …