69 research outputs found

    Accurate Reconstruction of Molecular Phylogenies for Proteins Using Codon and Amino Acid Unified Sequence Alignments (CAUSA)

    Get PDF
    Based on molecular clock hypothesis, and neutral theory of molecular evolution, molecular phylogenies have been widely used for inferring evolutionary history of organisms and individual genes. Traditionally, alignments and phylogeny trees of proteins and their coding DNA sequences are constructed separately, thus often different conclusions were drawn. Here we present a new strategy for sequence alignment and phylogenetic tree reconstruction, codon and amino acid unified sequence alignment (CAUSA), which aligns DNA and protein sequences and draw phylogenetic trees in a unified manner. We demonstrated that CAUSA improves both the accuracy of multiple sequence alignments and phylogenetic trees by solving a variety of molecular evolutionary problems in virus, bacteria and mammals. Our results support the hypothesis that the molecular clock for proteins has two pointers existing separately in DNA and protein sequences. It is more accurate to read the molecular clock by combination (additive) of these two pointers, since the ticking rates of them are sometimes consistent, sometimes different. CAUSA software were released as Open Source under GNU/GPL license, and are downloadable free of charge from the website www.dnapluspro.com

    Apigenin remodels the gut microbiota to ameliorate ulcerative colitis

    Get PDF
    IntroductionUlcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined.MethodsDextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC.ResultsThe results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1β, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota.ConclusionApigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism

    Transcriptome Sequencing and De Novo Analysis for Yesso Scallop (Patinopecten yessoensis) Using 454 GS FLX

    Get PDF
    BACKGROUND: Bivalves comprise 30,000 extant species, constituting the second largest group of mollusks. However, limited genetic research has focused on this group of animals so far, which is, in part, due to the lack of genomic resources. The advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provides a turning point for bivalve research. In the present study, we performed de novo transcriptome sequencing to first produce a comprehensive expressed sequence tag (EST) dataset for the Yesso scallop (Patinopecten yessoensis). RESULTS: In a single 454 sequencing run, 805,330 reads were produced and then assembled into 32,590 contigs, with about six-fold sequencing coverage. A total of 25,237 unique protein-coding genes were identified from a variety of developmental stages and adult tissues based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and processes. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified. More than 49,000 single nucleotide polymorphisms (SNPs) and 2,700 simple sequence repeats (SSRs) were also detected. CONCLUSION: Our data provide the most comprehensive transcriptomic resource currently available for P. yessoensis. Candidate genes potentially involved in growth, reproduction, and stress/immunity-response were identified, and are worthy of further investigation. A large number of SNPs and SSRs were also identified and ready for marker development. This resource should lay an important foundation for future genetic or genomic studies on this species

    Quantum Codes Derived from Quasi-Twisted Codes of Index 2 with Hermitian Inner Product

    No full text

    Subacute‐onset cataract in a 29‐year‐old man with mitochondrial encephalomyopathy: A case report

    No full text
    Key Clinical Message This case report aims to emphasize that subacute occurrence of nuclear cataract might be one of the underestimated manifestations of mitochondrial encephalomyopathy, thus periodical ophthalmologic examinations are recommended

    Decadal climatic variability, trends, and future scenarios for the North China plain

    No full text
    Observed decadal climatic variability and trends for the north China plain (NCP) are assessed for significance with Kendall's test and discussed in light of future climate scenarios from multi-GCM outputs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The results indicate that the NCP has become warmer and drier over the last four decades. The annual precipitation has declined by about 43.9 mm (6.7%, although not statistically significant), and the annual means of daily mean, maximum, and minimum temperatures have increased by 0.83° 0.18°, and 1.46°C, respectively, during the past 40 yr. Both trends for annual means of daily mean and minimum temperatures are statistically significant. The future climate of the NCP is projected to be warmer and, with less confidence, wetter. However, streamflow could decline under these projections, based on the results of the two-parameter climate elasticity of streamflow index. This will produce serious challenges for water resources management and likely lead to exacerbated problems for agriculture, industry, urban communities, and the environment. © 2009 American Meteorological Society
    corecore