63 research outputs found

    A KINEMATIC ANALYSIS OF ROUND KICK IN TAEKWONDO

    Get PDF
    The purpose of this study is to provide kinematic analysis of the round kick in Taekwondo. The round kick is an important component required in the performance of Taekwondo. In order to accomplish this skill, it is necessary to accelerate the movement of the leg to a high velocity. In order to determine the mechanism involved in this maneuver, kinematic analysis of the motion will be used. This study analyzed the round kick motion through application of the 3D-video analysis system. The data determined that the muscles of the thigh initiate the round kick, transmitting force from the hip, through to the shank and finally to the foot. Before kicking the target, the knee-joint flexes to increase the velocity of leg and then the lower limbs extend. These are the requirements for a rapid and powerful kick

    Lupus Erythematosus: Dermatologic Perspectives on the Diversity

    Get PDF
    Lupus is one of the complex autoimmune disease, which is difficult to diagnose and consists of few subtypes that are required to be classified. During our clinical work, we found out that the dermoscopy can be of great benefit to diagnose discoid lupus erythematosus (DLE). The histopathological examination is very important to confirm the diagnosis. The cases of infant LE patients, may derive the autoimmune antibodies from their mothers in order to diagnose the neonatal lupus erythematosus. Thus, it is very important to examine the antibodies of the mother, who may also be a subclinical LE patient and need continuous follow-ups or even treatment managements. Here, we present the cases of lupus with particular characteristics including linear cutaneous lupus erythematosus, DLE, and neonatal lupus erythematosus

    Direct numerical simulation of Taylor-Couette flow with vertical asymmetric rough walls

    Full text link
    Direct numerical simulations are performed to explore the effects of rotating direction of the vertical asymmetric rough wall on the transport properties of Taylor-Couette (TC) flow up to a Taylor number of Ta=2.39×107\textit{Ta} = 2.39 \times 10^7. It is shown that compared to the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque \textit{Nu}ω_\omega, and more importantly, at high \textit{Ta} clockwise rotation of the inner rough wall (the fluid is sheared by the steeper slope side of the strips) results in a significantly bigger torque enhancement as compared to the counter-clockwise rotation (the fluid is sheared by the smaller slope side of the strips) due to the larger convective contribution to the angular velocity flux, although the rotating direction has a negligible effect on the torque at low \textit{Ta}. The larger torque enhancement caused by the clockwise rotation of vertical asymmetric rough wall at high \textit{Ta} is then explained by the stronger coupling between the rough wall and the bulk due to the larger biased azimuthal velocity towards the rough wall at the mid-gap of TC system, the increased intensity of turbulence manifesting by larger Reynolds stress and thinner boundary layer, and the more significant contribution of the pressure force on the surface of rough wall to the torque.Comment: 17 pages,11 figure

    Gujin Dan is a Chinese medicine formulation that stimulates cell proliferation and differentiation by controlling multiple genes involved in MC3T3-E1 cells

    Get PDF
    Background: With the development of Traditional Chinese medicine (TCM) in recent years, the use of TCM in the treatment of osteoporosis has received much attention and research. Gujin Dan (GJD) is one of the representative Chinese medicine formulations that work synergistically with 19 herbs and has been used for decades to treat cervical spondylosis, lumbar disc herniation, osteoarthritis and osteoporosis. However, the exact molecular mechanism by which GJD is used to strengthen bones in the treatment of osteoporosis remains largely unknown. / Methods: In this study, an aqueous extract of GJD was prepared and its components were identified by high-performance liquid chromatography (HPLC). The effect of GJD aqueous extract on MC3T3-E1 cells was determined by Cell Counting Kit-8 (CCK-8) assay, alkaline phosphatase (ALP), and alizarin red S staining (ARS), combined with RNA sequencing (RNA-seq) and qRT-PCR. / Results: Our study showed that GJD significantly promoted the proliferation of MC3T3-E1 cells, as well as the synthesis and mineralisation of the extracellular matrix. GJD significantly increased the expression levels of genes that promote cell proliferation such as Adamts1, Mcam, Cyr61, Fos, Cebpd, Fosl2, Sirt1, Nipbl, Sema3c and Kcnq1ot1, up-regulated genes that inhibit apoptosis such as Gadd45a, Birc3, up-regulated genes that inhibit osteoclastogenesis such as Bcl6, Nfkbiz, Clcf1, Bcl3, Lgals3, Wisp1, Dusp1 and Fblim1, up-regulated genes that promote MC3T3-E1 cell differentiation such as Junb, Egr1, Klf10, Atf6, Malat1, Btg2, Sertad4, Zfyve16, Tet2, Creb5, Snai2, Fam46a, Calcrl and Pdzrn3. In addition, GJD mildly upregulated the expression levels of gene markers such as Atf4, Fn1, Usp7, Sox4, Col16a1, Spp1, Bmp1, Runx2, Bglap, Col12a1, and Alpl in osteoblasts. / Conclusions: Our results show that GJD promotes the differentiation and proliferation of MC3T3-E1 cells, inhibits osteoclast formation, and prevents osteoblast apoptosis. The present study significantly improves the current understanding of the molecular effects of GJD on MC3T3-E1 cells. This study also provides a new strategy for the further use of Chinese medicinal preparations against bone metabolism-related diseases

    How does the recurrence-related morphology characteristics of the Pcom aneurysms correlated with hemodynamics?

    Get PDF
    IntroductionPosterior communicating artery (Pcom) aneurysm has unique morphological characteristics and a high recurrence risk after coil embolization. This study aimed to evaluate the relationship between the recurrence-related morphology characteristics and hemodynamics.MethodA total of 20 patients with 22 Pcom aneurysms from 2019 to 2022 were retrospectively enrolled. The recurrence-related morphology parameters were measured. The hemodynamic parameters were simulated based on finite element analysis and computational fluid dynamics. The hemodynamic differences before and after treatment caused by different morphological features and the correlation between these parameters were analyzed.ResultSignificant greater postoperative inflow rate at the neck (Qinflow), relative Qinflow, inflow concentration index (ICI), and residual flow volume (RFV) were reported in the aneurysms with wide neck (>4 mm). Significant greater postoperative RFV were reported in the aneurysms with large size (>7 mm). Significant greater postoperative Qinflow, relative Qinflow, and ICI were reported in the aneurysms located on the larteral side of the curve. The bending angle of the internal carotid artery at the initiation of Pcom (αICA@PCOM) and neck diameter had moderate positive correlations with Qinflow, relative Qinflow, ICI, and RFV.ConclusionThe morphological factors, including aneurysm size, neck diameter, and αICA@PCOM, are correlated with the recurrence-inducing hemodynamic characteristics even after fully packing. This provides a theoretical basis for evaluating the risk of aneurysm recurrence and a reference for selecting a surgical plan

    Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics

    Get PDF
    Microfluidics appeared in the 1990s as a promising technology and has received considerable attention in developing stimuli-responsive hydrogel fibres in microscale for tissue engineering and actuation devices. In this work, thermo- and electro-responsive graphene oxide/poly(N-isopropylacrylamide)/sodium alginate (GO/PNIPAM/SA) hydrogel fibres were prepared via microfluidics and off-chip free radical polymerization. The composite hydrogel fibres were characterised using FTIR, SEM, and DSC. The thermo-triggered volume-phase transition and electrically triggered bending behaviours were also investigated. The results show that the hydrogel fibres have porous internal structures and the pore size becomes smaller with the increase of GO content due to the hydrogen bonding between the amide groups of PNIPAM chains and oxygen-containing groups on the GO nanosheets. Besides this, the incorporation of increased GO content enlarges the swelling ratio of the hydrogel fibre. The hydrogel fibres also exhibit bending behaviour under the non-contact direct current electric field
    • …
    corecore