18 research outputs found

    Network Configuration in App Design: The Effects of Simplex and Multiplex Networks on Team Performance

    Get PDF
    Members of mobile app design teams collaborate with each other to accomplish tasks and/or to socialize. However, how network configuration of instrumental and expressive interactions affects team creativity, efficiency, and satisfaction has not yet been studied. Accounting for both simplex and multiplex social networks in teams, this study develops a research model examining the mechanisms by which the centralization of different types of networks impacts team performance. To test our research hypotheses, we collected data from 62 student teams working on an app design class project. We found that the centralization of the instrumental-expressive multiplex network reduces teams’ information elaboration and similarity perception; the centralization of the instrumental simplex network is beneficial to information elaboration; and team information elaboration positively influences team creativity, efficiency, and satisfaction. We also found that team similarity perception negatively affects team creativity and positively affects team satisfaction. To alleviate concerns about the potential simultaneity bias between network configuration and information elaboration or similarity perception, we replicated the results based on a cross-lagged analysis with additional data collected from 48 design teams at two points: at team establishment and at project completion. This paper contributes to the literature on software development by examining the mechanisms via which the configuration of multiplex and simplex networks affects team performance

    Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway

    Get PDF
    Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD

    Doubly Constrained Robust Blind Beamforming Algorithm

    No full text
    We propose doubly constrained robust least-squares constant modulus algorithm (LSCMA) to solve the problem of signal steering vector mismatches via the Bayesian method and worst-case performance optimization, which is based on the mismatches between the actual and presumed steering vectors. The weight vector is iteratively updated with penalty for the worst-case signal steering vector by the partial Taylor-series expansion and Lagrange multiplier method, in which the Lagrange multipliers can be optimally derived and incorporated at each step. A theoretical analysis for our proposed algorithm in terms of complexity cost, convergence performance, and SINR performance is presented in this paper. In contrast to the linearly constrained LSCMA, the proposed algorithm provides better robustness against the signal steering vector mismatches, yields higher signal captive performance, improves greater array output SINR, and has a lower computational cost. The simulation results confirm the superiority of the proposed algorithm on beampattern control and output SINR enhancement

    Robust Recursive Algorithm under Uncertainties via Worst-Case SINR Maximization

    No full text
    The performance of traditional constrained-LMS (CLMS) algorithm is known to degrade seriously in the presence of small training data size and mismatches between the assumed array response and the true array response. In this paper, we develop a robust constrained-LMS (RCLMS) algorithm based on worst-case SINR maximization. Our algorithm belongs to the class of diagonal loading techniques, in which the diagonal loading factor is obtained in a simple form and it decreases the computation cost. The updated weight vector is derived by the descent gradient method and Lagrange multiplier method. It demonstrates that our proposed recursive algorithm provides excellent robustness against signal steering vector mismatches and the small training data size and, has fast convergence rate, and makes the mean output array signal-to-interference-plus-noise ratio (SINR) consistently close to the optimal one. Some simulation results are presented to compare the performance of our robust algorithm with the traditional CLMS algorithm

    Research on the Structure and Control Strategy of a Novel Power Electronic Transformer for AC/DC Hybrid Distribution Network

    No full text
    Power electronic transformers (PETs), as the core devices of the energy internet, are the key to achieve both effective consumption for renewable energy and the safe and coordinated operation for AC/DC hybrid system. In order to overcome the shortcomings of the existing PETs, a novel PET with an improved structure that applicable for multi-voltage level AC/DC hybrid distribution network is proposed. The topology of the proposed PET is analyzed, and the corresponding control methods are suggested for different parts. The input stage utilizes the modular multilevel converter structure and applies the virtual synchronous machine control strategy to enhance the inertia and damping of the system. The power of the output stage is adjusted flexibly and that enables the PET to provide certain power support to the upper grid and participate in its primary frequency regulation. A combined connection of input-series output-series and input-series output-parallel is applied for the dual-active-bridge modules of the isolation stage to enable network interconnection and electrical isolation of AC/DC grids with significantly different voltage levels. A power coordinated control method is then proposed to meet the power demand of the distribution networks connected to the output stage and ensure stable operations of PET simultaneously. The reliability and efficiency of the proposed PET topology and control strategy for AC/DC hybrid distribution network are finally verified via PSCAD/EMTDC simulation

    Network Configuration in App Design: The Effects of Simplex and Multiplex Networks on Team Performance

    Get PDF
    Members of mobile app design teams collaborate with each other to accomplish tasks and/or to socialize. How network configuration of instrumental and expressive interactions affects team creativity, efficiency, and satisfaction has not been studied. Taking account of both simplex and multiplex social networks in teams, this study develops a research model examining the mechanisms by which the centralization of different types of networks impact team performance. To test our research hypotheses, we collect data from 62 student teams working on a class project of app design. We find that the centralization of the instrumental-expressive multiplex network reduces teams’ information elaboration and similarity perception. The centralization of the instrumental simplex network is beneficial to information elaboration. Team information elaboration positively influences team creativity, efficiency, and satisfaction. Team similarity perception negatively affects team creativity and positively affects team satisfaction. To alleviate concerns about the potential simultaneity bias between network configuration and information elaboration or similarity perception, we replicated the results based on a cross-lagged analysis with additional data collected from 48 design teams at two points: at team establishment and at project completion. This paper contributes to the literature in software development by examining the mechanisms via which the configuration of multiplex and simplex networks affects team performance

    Combining QTL-seq and linkage mapping to fine map a candidate gene in qCTS6 for cold tolerance at the seedling stage in rice

    No full text
    Abstract Background Cold stress caused by low temperatures is an important factor restricting rice production. Identification of cold-tolerance genes that can stably express in cold environments is crucial for molecular rice breeding. Results In this study, we employed high-throughput quantitative trait locus sequencing (QTL-seq) analyses in a 460-individual F2:3 mapping population to identify major QTL genomic regions governing cold tolerance at the seedling stage in rice. A novel major QTL (qCTS6) controlling the survival rate (SR) under low-temperature conditions of 9°C/10 days was mapped on the 2.60-Mb interval on chromosome 6. Twenty-seven single-nucleotide polymorphism (SNP) markers were designed for the qCST6 region based on re-sequencing data, and local QTL mapping was conducted using traditional linkage analysis. Eventually, we mapped qCTS6 to a 96.6-kb region containing 13 annotated genes, of which seven predicted genes contained 13 non-synonymous SNP loci. Quantitative reverse transcription PCR analysis revealed that only Os06g0719500, an OsbZIP54 transcription factor, was strongly induced by cold stress. Haplotype analysis confirmed that +376 bp (T>A) in the OsbZIP54 coding region played a key role in regulating cold tolerance in rice. Conclusion We identified OsbZIP54 as a novel regulatory gene associated with rice cold-responsive traits, with its Dongfu-104 allele showing specific cold-induction expression serving as an important molecular variation for rice improvement. This result is expected to further exploration of the genetic mechanism of rice cold tolerance at the seedling stage and improve cold tolerance in rice varieties by marker-assisted selection

    Identification and Functional Analysis of the Caffeic Acid O-Methyltransferase (COMT) Gene Family in Rice (Oryza sativa L.)

    No full text
    Caffeic acid O-methyltransferase (COMT) is one of the core enzymes involved in lignin synthesis. However, there is no systematic study on the rice COMT gene family. We identified 33 COMT genes containing the methyltransferase-2 domain in the rice genome using bioinformatic methods and divided them into Group I (a and b) and Group II. Motifs, conserved domains, gene structure and SNPs density are related to the classification of OsCOMTs. The tandem phenomenon plays a key role in the expansion of OsCOMTs. The expression levels of fourteen and thirteen OsCOMTs increased or decreased under salt stress and drought stress, respectively. OsCOMTs showed higher expression levels in the stem. The lignin content of rice was measured in five stages; combined with the expression analysis of OsCOMTs and multiple sequence alignment, we found that OsCOMT8, OsCOMT9 and OsCOMT15 play a key role in the synthesis of lignin. Targeted miRNAs and gene ontology annotation revealed that OsCOMTs were involved in abiotic stress responses. Our study contributes to the analysis of the biological function of OsCOMTs, which may provide information for future rice breeding and editing of the rice genome

    Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials

    No full text
    Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives

    Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress

    No full text
    Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins
    corecore