258 research outputs found

    Efficient quantum gates for individual nuclear spin qubits by indirect control

    Get PDF
    Hybrid quantum registers, such as electron-nuclear spin systems, have emerged as promising hardware for implementing quantum information and computing protocols in scalable systems. Nevertheless, the coherent control of such systems still faces challenges. Particularly, the lower gyromagnetic ratios of the nuclear spins cause them to respond slowly to control fields, resulting in gate times that are generally longer than the coherence time of the electron spin. Here, we demonstrate a scheme for circumventing this problem by indirect control: We apply a small number of short pulses only to the electron spin and let the full system undergo free evolution under the hyperfine coupling between the pulses. Using this scheme, we realize robust quantum gates in an electron-nuclear spin system, including a Hadamard gate on the nuclear spin and a controlled-NOT gate with the nuclear spin as the target qubit. The durations of these gates are shorter than the electron spin coherence time, and thus additional operations to extend the system coherence time are not needed. Our demonstration serves as a proof of concept for achieving efficient coherent control of electron-nuclear spin systems, such as NV centers in diamond. Our scheme is still applicable when the nuclear spins are only weakly coupled to the electron spin.Comment: Supplementary material added; Accepted for publication in PR

    Iterative quantum state transfer along a chain of nuclear spin qubits

    Full text link
    Transferring quantum information between two qubits is a basic requirement for many applications in quantum communication and quantum information processing. In the iterative quantum state transfer (IQST) proposed by D. Burgarth et al. [Phys. Rev. A 75, 062327 (2007)], this is achieved by a static spin chain and a sequence of gate operations applied only to the receiving end of the chain. The only requirement on the spin chain is that it transfers a finite part of the input amplitude to the end of the chain, where the gate operations accumulate the information. For an appropriate sequence of evolutions and gate operations, the fidelity of the transfer can asymptotically approach unity. We demonstrate the principle of operation of this transfer scheme by implementing it in a nuclear magnetic resonance quantum information processor.Comment: Version for submission. Comments are welcom

    Effect of system level structure and spectral distribution of the environment on the decoherence rate

    Get PDF
    Minimizing the effect of decoherence on a quantum register must be a central part of any strategy to realize scalable quantum information processing. Apart from the strength of the coupling to the environment, the decoherence rate is determined by the the system level structure and by the spectral composition of the noise trace that the environment generates. Here, we discuss a relatively simple model that allows us to study these different effects quantitatively in detail. We evaluate the effect that the perturbation has on an NMR system while it performs a Grover search algorithm.Comment: Generalizations are added. Comments are welcom
    • …
    corecore