32 research outputs found

    Patterns of de novo metastasis and survival outcomes by age in breast cancer patients: a SEER population-based study

    Get PDF
    BackgroundThe role of age in metastatic disease, including breast cancer, remains obscure. This study was conducted to determine the role of age in patients with de novo metastatic breast cancer.MethodsBreast cancer patients diagnosed with distant metastases between 2010 and 2019 were retrieved from the Surveillance, Epidemiology, and End Results database. Comparisons were performed between young (aged ≤ 40 years), middle-aged (41–60 years), older (61–80 years), and the oldest old (> 80 years) patients. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated using multivariate Cox proportional hazard models. Survival analysis was performed by the Kaplan–Meier method.ResultsThis study included 24155 (4.4% of all patients) de novo metastatic breast cancer patients. The number of young, middle-aged, older, and the oldest old patients were 195 (8.3%), 9397 (38.9%), 10224 (42.3%), and 2539 (10.5%), respectively. The 5-year OS rate was highest in the young (42.1%), followed by middle-aged (34.8%), older (28.3%), and the oldest old patients (11.8%). Multivariable Cox regression analysis showed that middle-aged (aHR, 1.18; 95% CI, 1.10–1.27), older (aHR, 1.42; 95% CI, 1.32–1.52), and the oldest old patients (aHR, 2.15; 95% CI, 1.98–2.33) had worse OS than young patients. Consistently, middle-aged (aHR, 1.16; 95% CI, 1.08–1.25), older (aHR, 1.32; 95% CI, 1.23–1.43), and the oldest old patients (aHR, 1.86; 95% CI, 1.71–2.03) had worse BCSS than young patients.ConclusionThis study provided clear evidence that de novo metastatic breast cancer had an age-specific pattern. Age was an independent risk factor for mortality in patients with de novo metastatic breast cancer

    Classical risk factors of cardiovascular disease among Chinese male steel workers: a prospective cohort study for 20 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) constitutes a major public health problem in China and worldwide. We aimed to examine classical risk factors and their magnitudes for CVD in a Chinese cohort with over 20 years follow-up.</p> <p>Methods</p> <p>A cohort of 5092 male steelworkers recruited from 1974 to 1980 in Beijing of China was followed up for an average of 20.84 years. Cox proportional-hazards regression model were used to evaluate the risk of developing a first CVD event in the study participants who were free of CVD at the baseline.</p> <p>Results</p> <p>The multivariable-adjusted hazard ratio (HR) associated with every 20 mmHg rise in systolic blood pressure (SBP) was 1.63 in this Chinese male population, which was higher than in Caucasians. Compared to non-smokers, men who smoked not less than one-pack-a-day had a HR of 2.43 (95% confidence interval [CI], 1.75-3.38). The HR (95% CI) for every 20 mg/dl increase in total serum cholesterol (TC) and for every point rise in body mass index (BMI) was 1.13 (1.04-1.23) and 1.06 (1.02-1.09), respectively.</p> <p>Conclusions</p> <p>Our study documents that hypertension, smoking, overweight and hypercholesterolemia are major conventional risk factors of CVD in Chinese male adults. Continued strengthening programs for prevention and intervention on these risk factors are needed to reduce the incidence of CVD in China.</p

    A Self-Consistent Physical Model of the Bubbles in a Gas Solid Two-Phase Flow

    No full text
    We develop a self-consistent physical model of bubbles in a gas solid two-phase flow. Using the Peng-Robonson state equation and a detailed specific heat ratio equation of bubbles, we obtain the kinetic equations of the bubbles on the basis of the Ergun equation, thermodynamic equations, and kinetic equations. It is found that the specific heat ratio of bubbles in such systems strongly depends on bubble pressures and temperatures, which play an important role in the characteristics of the bubbles. The theoretical studies show that with increasing height in the systems, the gas flow rate shows a downward trend. Moreover, the larger particles in the gas solid flows are, the greater the gas velocity is. The bubble sizes increase with the increasing heights of the gas solid systems, and then decrease. The bubble velocity is affected by the gas velocity and the bubble size, which gradually increase and eventually quasi-stabilize. This shows that gas and solid phases in a gas solid two-phase flow interact with each other and a self-consistent system comes into being. The theoretical results have exhibited important value as a guide for understanding the properties and effects of bubbles in gas solid two-phase flows

    Electrochemical Conversion of CO2 to CO Utilizing Quaternized Polybenzimidazole Anion Exchange Membrane

    No full text
    CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with different quaternization degrees are prepared for application in ECR. Among all QAPBI membranes, the QAPBI-2 membrane exhibits optimized physico-chemical properties. In addition, the QAPBI-2 membrane shows higher a Faraday efficiency and CO partial current density compared with commercial Nafion 117 and FAA-3-PK-130 membranes, at &minus;1.5 V (vs. RHE) in an H-type cell. Additionally, the QAPBI-2 membrane also has a higher Faraday efficiency and CO partial current density compared with Nafion 117 and FAA-3-PK-130 membranes, at &minus;3.0 V in a membrane electrode assembly reactor. It is worth noting that the QAPBI-2 membrane also has excellent ECR stability, over 320 h in an H-type cell. This work illustrates a promising pathway to obtaining cost-effective membranes through a molecular structure regulation strategy for ECR application

    Electrochemical Conversion of CO<sub>2</sub> to CO Utilizing Quaternized Polybenzimidazole Anion Exchange Membrane

    No full text
    CO is a significant product of electrochemical CO2 reduction (ECR) which can be mixed with H2 to synthesize numerous hydrocarbons. Membranes, as separators, can significantly influence the performance of ECR. Herein, a series of quaternized polybenzimidazole (QAPBI) anion exchange membranes with different quaternization degrees are prepared for application in ECR. Among all QAPBI membranes, the QAPBI-2 membrane exhibits optimized physico-chemical properties. In addition, the QAPBI-2 membrane shows higher a Faraday efficiency and CO partial current density compared with commercial Nafion 117 and FAA-3-PK-130 membranes, at −1.5 V (vs. RHE) in an H-type cell. Additionally, the QAPBI-2 membrane also has a higher Faraday efficiency and CO partial current density compared with Nafion 117 and FAA-3-PK-130 membranes, at −3.0 V in a membrane electrode assembly reactor. It is worth noting that the QAPBI-2 membrane also has excellent ECR stability, over 320 h in an H-type cell. This work illustrates a promising pathway to obtaining cost-effective membranes through a molecular structure regulation strategy for ECR application

    Occurrence Relationship between Sodium and Maceral Groups in Subbituminous Coal: A Case Study on Zhundong Coal and Shenfu Coal

    No full text
    The occurrence characteristics of sodium and its potential relationship with macerals in Zhundong coal, as well as in Shenfu coal with average sodium levels, are investigated in this study. A new five-step sequential extraction method was first conducted for determination. The occurrence status of sodium and its related macerals in samples was determined by microscope and SEM–EDS (scanning electron microscope–energy dispersive X-ray spectroscopy). Soluble sodium salts (H2O-Na) make up the primary proportion of sodium in Zhundong coal, at approximately 50%, while various sodium species are distributed in Shenfu coal with nonobvious differences. Inertinite contains more sodium than vitrinite does in both coals, and the highest enrichment degree of sodium was discovered in inertinite from Zhundong coal, which presented primarily as NaCl crystals (H2O-Na) in fusinite cells, with a local weight percentage of over 15%. More specifically, H2O-Na and insoluble Na both tend to enrich in fusinite. Additionally, it is found that maceral-rich products can be gathered using triboelectrostatic separation, and a portion of sodium can thus be removed from the coal by removing inertinite. This study may provide new insights and references regarding sodium removal from Zhundong coal
    corecore