3 research outputs found

    Microglia-Synapse Pathways: Promising Therapeutic Strategy for Alzheimer’s Disease

    No full text
    The main hallmarks of Alzheimer’s disease (AD) are extracellular deposits of amyloid plaques and intracellular accumulation of hyperphosphorylated neurofibrillary tangles (tau). However, the mechanisms underlying these neuropathological changes remain largely unclear. To date, plenty of studies have shown that microglia-mediated neuroinflammation contributes to the pathogenesis of AD, and the microglia-synapse pathways have been repeatedly identified as the crucial factor in the disease process. In this review, evidences from microglia and synapse studies are presented, and the role of microglia in the pathogenesis of AD, the contributing factors to synapse dysfunction, and the role and mechanisms of microglia-synapse pathways will be discussed

    Identifying circRNA–miRNA–mRNA Regulatory Networks in Chemotherapy-Induced Peripheral Neuropathy

    No full text
    Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and severe side effect of first-line chemotherapeutic agents. The association between circular RNAs (circRNAs) and CIPN remains unclear. In this study, CIPN models were constructed with Taxol, while 134 differentially expressed circRNAs, 353 differentially expressed long non-coding RNAs, and 86 differentially expressed messenger RNAs (mRNAs) were identified utilizing RNA sequencing. CircRNA-targeted microRNAs (miRNAs) were predicted using miRanda, and miRNA-targeted mRNAs were predicted using TargetScan and miRDB. The intersection of sequencing and mRNA prediction results was selected to establish the circRNA–miRNA–mRNA networks, which include 15 circRNAs, 18 miRNAs, and 11 mRNAs. Functional enrichment pathway analyses and immune infiltration analyses revealed that differentially expressed mRNAs were enriched in the immune system, especially in T cells, monocytes, and macrophages. Cdh1, Satb2, Fas, P2ry2, and Zfhx2 were further identified as hub genes and validated by RT-qPCR, correlating with macrophages, plasmacytoid dendritic cells, and central memory CD4 T cells in CIPN. Additionally, we predicted the associated diseases, 36 potential transcription factors (TFs), and 30 putative drugs for hub genes using the DisGeNET, TRRUST, and DGIdb databases, respectively. Our results indicated the crucial role of circRNAs, and the immune microenvironment played in CIPN, providing novel insights for further research

    Conductive PS inverse opals for regulating proliferation and differentiation of neural stem cells

    No full text
    The development of neural tissue engineering has brought new hope to the treatment of spinal cord injury (SCI). Up to date, various scaffolds have been developed to induce the oriented growth and arrangement of nerves to facilitate the repair after injury. In this work, a conductive and anisotropic inverse opal substrate was presented by modifying polystyrene (PS) inverse opal films with carbon nanotubes and then stretching them to varying degrees. The film had good biocompatibility, and neural stem cells (NSCs) grown on the film displayed good orientation along the stretching direction. In addition, benefiting from the conductivity and anisotropy of the film, NSCs differentiated into neurons significantly. These results suggest that the conductive and anisotropic PS inverse opal substrates possess value in nerve tissue engineering regeneration
    corecore