57 research outputs found

    A tuber mustard AP2/ERF transcription factor gene, BjABR1, functioning in abscisic acid and abiotic stress responses, and evolutionary trajectory of the ABR1 homologous genes in Brassica species

    Get PDF
    The AP2/ERF superfamily of transcription factors is one of the largest transcription factor families in plants and plays an important role in plant development processes and stress responses. In this study, BjABR1, an AP2/ERF superfamily gene, from tuber mustard (Brassica juncea var. tumida Tsen et Lee), sharing high amino acid sequence similarity with the AtABR1 (Arabidopsis thaliana AP2-like abscisic acid repressor 1) gene, were performed functional research, and the ABR1 homologous genes in Brassica species were identified and performed phylogenetic analysis. The promoter sequence of BjABR1 contained many phytohormone- and stress-related cis-elements; ABA (abscisic acid) and abiotic stresses can induce BjABR1 expression in tuber mustard; overexpression of BjABR1 in Arabidopsis can alleviate plant sensitivity to ABA and salt and osmotic stresses, and the alleviation may be due to changes in stress/ABA-induced gene expression. These results indicated that BjABR1 functions in ABA and abiotic stress responses. By BLAST searches against the genome database of five Brassica species (three diploids, B. rapa, B. nigra, and B. oleracea, and two allotetraploid, B. juncea and B. napus) using the protein sequence of AtABR1, 3, 3, 3, 6, and 5 ABR1 homologous genes in B. nigra, B. rapa, B. oleracea, B. juncea, and B. napus were identified, respectively, and they shared high sequence similarity. By sequence analysis, annotation mistakes of the protein-coding regions of two ABR1 homologous genes, GSBRNA2T00134741001 and BjuB007684, were found and corrected. Then, the evolution analysis of these ABR1 homologous genes showed that the ancestor of the three diploid species had three ABR1 homologous genes and each diploid inherited all the three genes from their ancestor; then, allotetraploid B. juncea inherited all the six genes from B. rapa and B. nigra with no gene lost, while allotetraploid B. napus inherited all the three genes from B. oleracea and two genes from B. rapa with one gene lost, indicating that ABR1 homologous genes possessed greater hereditary conservation in Brassica species. The ABR1 homologous genes between B. rapa and B. oleracea shared much higher sequence similarity compared to that of B. nigra in diploid species, indicating that ABR1 homologous genes in B. nigra had experienced more rapid evolution, and B. rapa and B. oleracea may share closer relationship compared to B. nigra. Moreover, the spatial and temporal expression analysis of six ABR1 homologous genes of tuber mustard showed that they possessed different expression models. These results imply that ABR1 homologous genes are important to Brassica plants, and they may possess similar function in ABA and abiotic stress responses but play a role in different tissues and growing stages of plant. This study will provide the foundation to the functional research of ABR1 homologous genes in the Brassica species and help to reveal and understand the evolution mechanisms of Brassica species

    Biological functions of endophytic bacteria in Robinia pseudoacacia ‘Hongsen’

    Get PDF
    IntroductionEndophytes and their host plants have co-evolved for a very long time. This relationship has led to the general recognition of endophytes as a particular class of microbial resources. R. pseudoacacia ‘Hongsen’ is drought- and barren-resistant species that can be grown in both the north and south of China, efficiently addresses the ecological issues caused by China’s ‘southern eucalyptus and northern poplar. Up to date, cultured-dependent studies are available for the R. pseudoacacia nitrogen-fixing and other endophytes. Therefore, the present research studied the R. pseudoacacia ‘Hongsen,’ microbiome in detail by high-throughput sequencing and culture dependant.MethodsThis study examined microbial species and functional diversity in Robinia pseudoacacia ‘Hongsen’ using culture-dependent (isolation) and culture-independent techniques.ResultsA total of 210 isolates were isolated from R. pseudoacacia ‘Hongsen.’ These isolates were clustered into 16 groups by the In Situ PCR (IS-PCR) fingerprinting patterns. 16S rRNA gene sequence analysis of the representative strain of each group revealed that these groups belonged to 16 species of 8 genera, demonstrating the diversity of endophytes in R. pseudoacacia ‘Hongsen’. ’Bacillus is the most prevalent genus among all the endophytic bacteria. High-throughput sequencing of endophytic bacteria from R. pseudoacacia ‘Hongsen’ of the plant and the rhizosphere soil bacteria showed that the bacterial populations of soil near the root, leaf, and rhizosphere differed significantly. The microbial abundance decreased in the endophytes as compared to the rhizosphere. We observed a similar community structure of roots and leaves. With and without root nodules, Mesorhizobium sp. was significantly different in R. pseudoacacia ‘Hongsen’ plant.DiscussionIt was predicted that R. pseudoacacia ‘Hongsen’ plant endophytic bacteria would play a significant role in the metabolic process, such as carbohydrate metabolism, amino acid metabolism, membrane transport, and energy metabolism

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    The complete chloroplast genome of Lilium nepalense (Liliaceae)

    No full text
    Lilium nepalense is a useful plant species not only for its showy flowers but also has high medicinal value. In this study, the whole chloroplast genome of L. nepalense was sequenced for the first time. The genome size of L. nepalense, was 152,956bp, with typical tetragonal structure: one large single copy (82,573 bp), one small single copy (17,527 bp), and a pair of inverted repeat regions (IRs, 26,428 bp). The overall GC content was 37.0%. The complete genome contained 131 genes, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that L. nepalense was a close relationship between L. leucanthum and L. henryi. Phylogenetic analysis placed L. nepalense under the family Liliaceae

    The complete chloroplast genome of Lilium amoenum (Liliopsida: Liliaceae) from Yunnan, China

    No full text
    Lilium amoenum E. H. Wilson ex Sealy is classified in Liliaceae, and it is an important ornamental plant with wonderful rose-red color and pleasant rose fragrance. In this study, we sequenced the complete chloroplast genome of L. amoenum by Illumina Hiseq X Ten and PacBio RS technologies. The genome size of L. amoenum is 152,280 bp, and displays a typical quadripartite structure: one large single-copy (LSC, 81,977 bp), one small single-copy (SSC, 17,539 bp), and a pair of inverted repeat regions (IRs, 26,382 bp). The overall GC content was 37.0%. The complete genome contained 131 genes, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that L. amoenum is closely related to L. taliense and L. bakerianum. The present study could afford crucial genetic information for further researches on the genus and related genera

    The complete chloroplast genome of Lilium rosthornii Diels (Liliopsida: Liliaceae) from Hunan, China

    No full text
    Lilium rosthornii is the perennial herbaceous bulbous plant belonging to the Lily of the Liliaceae, with high ornamental value and medicinal values. In this present study, we sequenced the complete chloroplast genome of Lilium rosthornii by Illumina Hiseq X Ten and PacBio RS technologies firstly. The genome size of L. rosthornii, was 152,242bp, with typical tetragonal structure: one large single-copy (LSC, 81,875 bp), one small single-copy (SSC, 17,553 bp), and a pair of inverted repeat regions (IRs, 26,407 bp). The overall GC content was 37.02%. The complete genome contained 131 genes, including 85 protein-coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis placed L. rosthornii under the family Liliaceae
    • …
    corecore