6,482 research outputs found

    Validity of single-channel model for a spin-orbit coupled atomic Fermi gas near Feshbach resonances

    Full text link
    We theoretically investigate a Rashba spin-orbit coupled Fermi gas near Feshbach resonances, by using mean-field theory and a two-channel model that takes into account explicitly Feshbach molecules in the close channel. In the absence of spin-orbit coupling, when the channel coupling gg between the closed and open channels is strong, it is widely accepted that the two-channel model is equivalent to a single-channel model that excludes Feshbach molecules. This is the so-called broad resonance limit, which is well-satisfied by ultracold atomic Fermi gases of 6^{6}Li atoms and 40^{40}K atoms in current experiments. Here, with Rashba spin-orbit coupling we find that the condition for equivalence becomes much more stringent. As a result, the single-channel model may already be insufficient to describe properly an atomic Fermi gas of 40^{40}K atoms at a moderate spin-orbit coupling. We determine a characteristic channel coupling strength gcg_{c} as a function of the spin-orbit coupling strength, above which the single-channel and two-channel models are approximately equivalent. We also find that for narrow resonance with small channel coupling, the pairing gap and molecular fraction is strongly suppressed by SO coupling. Our results can be readily tested in 40^{40}K atoms by using optical molecular spectroscopy.Comment: 6 pages, 6 figure

    Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque

    Full text link
    Reliable transport of magnetic skyrmions is required for any future skyrmion-based information processing devices. Here we present a micromagnetic study of the in-plane current-driven motion of a skyrmion in a ferromagnetic nanotrack with spatially sinusoidally varying Gilbert damping and/or non-adiabatic spin-transfer torque coefficients. It is found that the skyrmion moves in a sinusoidal pattern as a result of the spatially varying Gilbert damping and/or non-adiabatic spin-transfer torque in the nanotrack, which could prevent the destruction of the skyrmion caused by the skyrmion Hall effect. The results provide a guide for designing and developing the skyrmion transport channel in skyrmion-based spintronic applications.Comment: 5 pages, 6 figure

    Radio-frequency spectroscopy of weakly bound molecules in spin-orbit coupled atomic Fermi gases

    Full text link
    We investigate theoretically radio-frequency spectroscopy of weakly bound molecules in an ultracold spin-orbit-coupled atomic Fermi gas. We consider two cases with either equal Rashba and Dresselhaus coupling or pure Rashba coupling. The former system has been realized very recently at Shanxi University [Wang et al., arXiv:1204.1887] and MIT [Cheuk et al., arXiv:1205.3483]. We predict realistic radio-frequency signals for revealing the unique properties of anisotropic molecules formed by spin-orbit coupling.Comment: 11 pages, 7 figure

    Deep graph learning for anomalous citation detection

    Get PDF
    Anomaly detection is one of the most active research areas in various critical domains, such as healthcare, fintech, and public security. However, little attention has been paid to scholarly data, that is, anomaly detection in a citation network. Citation is considered as one of the most crucial metrics to evaluate the impact of scientific research, which may be gamed in multiple ways. Therefore, anomaly detection in citation networks is of significant importance to identify manipulation and inflation of citations. To address this open issue, we propose a novel deep graph learning model, namely graph learning for anomaly detection (GLAD), to identify anomalies in citation networks. GLAD incorporates text semantic mining to network representation learning by adding both node attributes and link attributes via graph neural networks (GNNs). It exploits not only the relevance of citation contents, but also hidden relationships between papers. Within the GLAD framework, we propose an algorithm called Citation PUrpose (CPU) to discover the purpose of citation based on citation context. The performance of GLAD is validated through a simulated anomalous citation dataset. Experimental results demonstrate the effectiveness of GLAD on the anomalous citation detection task. © 2012 IEEE

    Variation of the Atmospheric Boundary Layer Height at the Eastern Edge of the Tibetan Plateau

    Full text link
    This paper utilized the high temporal and spatial resolution temperature profile data observed by the multi-channel microwave radiometer at the Large High Altitude Air Shower Observatory (LHAASO) on the eastern slope of the Tibetan Plateau from February to May and August to November 2021, combined with the ERA5 reanalysis data products for the whole year of 2021, to study the daily, monthly, and seasonal variations of the atmospheric boundary layer height (ABLH). The results are as follows: (1) The ABLH on sunny days showed obvious fluctuations with peaks and valleys. The ABLH continued to rise with the increase of surface temperature after sunrise and usually reached its maximum value in the afternoon around 18:00, then rapidly decreased until sunset. (2) The average ABLH in April was the highest at about 1200 m, while it was only around 600 m in November. The ABLH fluctuated greatly during the day and was stable at around 400 m at night. The ABLH results obtained from ERA5 were slightly smaller overall but had a consistent trend of change with the microwave radiometer. (3) The maximum ABLH appeared in spring, followed by summer and autumn, and winter had the lowest value, with all peaks reached around 14:00-15:00. These results are of great significance for understanding the ABLH on the eastern slope of the Tibetan Plateau, and provide reference for the absolute calibration of photon numbers of the LHAASO telescope and the atmospheric monitoring plan, as well as for evaluating the authenticity and accuracy of existing reanalysis datasets

    On monogamy and polygamy relations of multipartite systems

    Full text link
    We study the monogamy and polygamy relations related to quantum correlations for multipartite quantum systems in a unified manner. It is known that any bipartite measure obeys monogamy and polygamy relations for the rr-power of the measure. We show in a uniformed manner that the generalized monogamy and polygamy relations are transitive to other powers of the measure in weighted forms. We demonstrate that our weighted monogamy and polygamy relations are stronger than recently available relations. Comparisons are given in detailed examples which show that our results are stronger in both situations.Comment: 18 pages, 4 figure
    • …
    corecore