5,065 research outputs found

    A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero point energy

    Full text link
    In this paper, we generalize the improved quasi-particle model proposed in J. Cao et al., [ Phys. Lett. B {\bf711}, 65 (2012)] from finite temperature and zero chemical potential to the case of finite chemical potential and zero temperature, and calculate the equation of state (EOS) for (2+1) flavor Quantum Chromodynamics (QCD) at zero temperature and high density. We first calculate the partition function at finite temperature and chemical potential, then go to the limit T=0T=0 and obtain the equation of state (EOS) for cold and dense QCD, which is important for the study of neutron stars. Furthermore, we use this EOS to calculate the quark-number density, the energy density, the quark-number susceptibility and the speed of sound at zero temperature and finite chemical potential and compare our results with the corresponding ones in the existing literature

    Asymptotic in a class of network models with an increasing sub-Gamma degree sequence

    Full text link
    For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.Comment: arXiv admin note: text overlap with arXiv:2002.12733 by other author
    • …
    corecore