3,119 research outputs found

    Energy bands and Landau levels of ultracold fermions in the bilayer honeycomb optical lattice

    Full text link
    We investigate the spectrum and eigenstates of ultracold fermionic atoms in the bilayer honeycomb optical lattice. In the low energy approximation, the dispersion relation has parabolic form and the quasiparticles are chiral. In the presence of the effective magnetic field, which is created for the system with optical means, the energy spectrum shows an unconventional Landau level structure. Furthermore, the experimental detection of the spectrum is proposed with the Bragg scattering techniques.Comment: To appear in Journal of Modern Optic

    GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology

    Get PDF
    BACKGROUND: Rapid progress in high-throughput biotechnologies (e.g. microarrays) and exponential accumulation of gene functional knowledge make it promising for systematic understanding of complex human diseases at functional modules level. Based on Gene Ontology, a large number of automatic tools have been developed for the functional analysis and biological interpretation of the high-throughput microarray data. RESULTS: Different from the existing tools such as Onto-Express and FatiGO, we develop a tool named GO-2D for identifying 2-dimensional functional modules based on combined GO categories. For example, it refines biological process categories by sorting their genes into different cellular component categories, and then extracts those combined categories enriched with the interesting genes (e.g., the differentially expressed genes) for identifying the cellular-localized functional modules. Applications of GO-2D to the analyses of two human cancer datasets show that very specific disease-relevant processes can be identified by using cellular location information. CONCLUSION: For studying complex human diseases, GO-2D can extract functionally compact and detailed modules such as the cellular-localized ones, characterizing disease-relevant modules in terms of both biological processes and cellular locations. The application results clearly demonstrate that 2-dimensional approach complementary to current 1-dimensional approach is powerful for finding modules highly relevant to diseases

    Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots

    Get PDF
    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots

    Human Mitochondrial tRNA Mutations in Maternally Inherited Deafness

    Get PDF
    AbstractMutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syndromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR)3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mutations including tRNASer(UCN)7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr15927G>A and tRNASer(UCN)7444G>A are insufficient to produce a deafness phenotype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochondrial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deafness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness

    Syntaxin 1B Mediates Berberine’s Roles in Epilepsy-Like Behavior in a Pentylenetetrazole-Induced Seizure Zebrafish Model

    Get PDF
    Epilepsy is a neuronal dysfunction syndrome characterized by transient and diffusely abnormal discharges of neurons in the brain. Previous studies have shown that mutations in the syntaxin 1b (stx1b) gene cause a familial, fever-associated epilepsy syndrome. It is unclear as to whether the stx1b gene also correlates with other stimulations such as flashing and/or mediates the effects of antiepileptic drugs. In this study, we found that the expression of stx1b was present mainly in the brain and was negatively correlated with seizures in a pentylenetetrazole (PTZ)-induced seizure zebrafish model. The transcription of stx1b was inhibited by PTZ but rescued by valproate, a broad-spectrum epilepsy treatment drug. In the PTZ–seizure zebrafish model, stx1b knockdown aggravated larvae hyperexcitatory swimming and prompted abnormal trajectory movements, particularly under lighting stimulation; at the same time, the expression levels of the neuronal activity marker gene c-fos increased significantly in the brain. In contrast, stx1b overexpression attenuated seizures and decreased c-fos expression levels following PTZ-induced seizures in larvae. Thus, we speculated that a deficiency of stx1b gene expression may be related with the onset occurrence of clinical seizures, particularly photosensitive seizures. In addition, we found that berberine (BBR) reduced larvae hyperexcitatory locomotion and abnormal movement trajectory in a concentration-dependent manner, slowed down excessive photosensitive seizure-like swimming, and assisted in the recovery of the expression levels of STX1B. Under the downregulation of STX1B, BBR’s roles were limited: specifically, it only slightly regulated the levels of the two genes stx1b and c-fos and the hyperexcitatory motion of zebrafish in dark conditions and had no effect on the overexcited swimming behavior seen in conjunction with lighting stimulation. These findings further demonstrate that STX1B protein levels are negatively correlated with a seizure and can decrease the sensitivity of the photosensitive response in a PTZ-induced seizure zebrafish larvae; furthermore, STX1B may partially mediate the anticonvulsant effect of BBR. Additional investigation regarding the relationship between STX1B, BBR, and seizures could provide new cues for the development of novel anticonvulsant drugs

    Comparative Study of Different Diets-Induced NAFLD Models of Zebrafish

    Get PDF
    Dietary composition has important impact on nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to explore the relationship between NAFLD and major dietary components using zebrafish larvae fed different diets. Zebrafish larvae fed with high cholesterol (HC), high fructose (HF) and extra feeding (EF) diets for 10 days displayed varying degrees steatosis. The incidence and degree of steatosis were the most severe in the EF group. A HC diet severely promoted lipid deposits in the caudal vein. The triglyceride and glucose contents of zebrafish significantly increased in the HF and EF groups compared with the control group. Moreover, the mRNA expression of oxidative stress gene gpx1a, endoplasmic reticulum stress genes ddit3 and grp78, inflammatory genes tnfa, glucose metabolism genes irs2, glut1 and glut2, and lipid metabolism genes cidec, chrebp, ppara and cpt1a were significantly increased in the HF group. The HC diet was associated with upregulation of grp78, and downregulation of irs2, glut1 and glut2. The mRNA expression of lipogenesis and glucose metabolism associated genes were decreased in the EF group. In addition, the autophagy associated genes atg3, atg5, atg7, and atg12, and protein expression of ATG3 and LC3BII were reduced and P62 were elevated in the HC group. We also performed comparative transcriptome analysis of the four groups. A total of 2,492 differentially expressed genes were identified, and 24 statistically significant pathways were enriched in the diet treatment groups. This study extends our understanding of the relationships between diet ingredients and host factors that contribute to the pathogenesis of NAFLD, which may provide new ideas for the treatment of NAFLD

    [2,9-Bis(3,5-dimethyl-1H-pyrazol-1-yl-κN 2)-1,10-phenanthroline-κ2 N,N′](methanol-κO)(nitrito-κ2 O,O′)cadmium(II) perchlorate

    Get PDF
    In the title complex, [Cd(NO2)(C22H20N6)(CH3OH)]ClO4, the CdII ion is in a distorted penta­gonal–bipyramidal CdN4O3 coordination geometry. The dihedral angles formed between the mean planes of the pyrazole rings and the phenanthroline ring system are 4.37 (19) and 5.84 (21)°. In the crystal, the anions and cations are connected by inter­molecular O—H⋯O hydrogen bonding, while pairs of weak inter­molecular C—H⋯O hydrogen bonds connect the cations into centrosymmetric dimers. In addition, there is a π–π stacking inter­action involving two symmetry-related benzene rings, with a centroid–centroid distance of 3.437 (3) Å
    corecore