3,061 research outputs found

    Trigonometric protocols for shortcuts to adiabatic transport of cold atoms in anharmonic traps

    Full text link
    Shortcuts to adiabaticity have been proposed to speed up the "slow" adiabatic transport of an atom or a wave packet of atoms. However, the freedom of the inverse engineering approach with appropriate boundary conditions provides thousands of trap trajectories for different purposes, for example, time and energy minimizations. In this paper, we propose trigonometric protocols for fast and robust atomic transport, taking into account cubic or quartic anharmonicities. The numerical results have illustrated that such trigonometric protocols, particular cosine ansatz, is more robust and the corresponding final energy excitation is smaller, as compared to sine trajectories implemented in previous experiments.Comment: 5 pages, 5 figure

    Engineering of nonclassical motional states in optomechanical systems

    Full text link
    We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.Comment: 11 pages, 4 figure

    Filtered-OFDM - Enabler for Flexible Waveform in The 5th Generation Cellular Networks

    Full text link
    The underlying waveform has always been a shaping factor for each generation of the cellular networks, such as orthogonal frequency division multiplexing (OFDM) for the 4th generation cellular networks (4G). To meet the diversified and pronounced expectations upon the upcoming 5G cellular networks, here we present an enabler for flexible waveform configuration, named as filtered-OFDM (f-OFDM). With the conventional OFDM, a unified numerology is applied across the bandwidth provided, balancing among the channel characteristics and the service requirements, and the spectrum efficiency is limited by the compromise we made. In contrast, with f-OFDM, the assigned bandwidth is split up into several subbands, and different types of services are accommodated in different subbands with the most suitable waveform and numerology, leading to an improved spectrum utilization. After outlining the general framework of f-OFDM, several important design aspects are also discussed, including filter design and guard tone arrangement. In addition, an extensive comparison among the existing 5G waveform candidates is also included to illustrate the advantages of f-OFDM. Our simulations indicate that, in a specific scenario with four distinct types of services, f-OFDM provides up to 46% of throughput gains over the conventional OFDM scheme.Comment: Accepted to IEEE Globecom, San Diego, CA, Dec. 201

    Transparency and amplification in a hybrid system of mechanical resonator and circuit QED

    Full text link
    We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hy- brid systems formed by a driven superconducting circuit QED system and a mechanical resonator, or a driven optomechanical system and a superconducting qubit. We find that both the mechanical resonator and the su- perconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity. We also find that the weak probe field can be amplified in some parameter regimes. We further study the statistical properties of the output field via the degrees of second-order coherence. We find that the nonclassicality of the output field strongly depends on the system parameters. Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.Comment: 9 pages, 9 figure

    Spinor wave equation of photon

    Full text link
    In this paper, we give the spinor wave equations of free and unfree photon, which are the differential equation of space-time one order. For the free photon, the spinor wave equations are covariant, and the spinors ψ\psi are corresponding to the the reducibility representations D10+D01D^{10}+D^{01} and D10+D01+D1/21/2D^{10}+D^{01}+D^{1/2 1/2} of the proper Lorentz group

    Coherent-feedback-induced photon blockade and optical bistability by an optomechanical controller

    Full text link
    It is well-known that some nonlinear phenomena such as strong photon blockade are hard to be observed in optomechanical system with current experimental technology. Here, we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers and enhances quantum nonlinearity from the controller to the controlled cavity, which makes it possible to observe strong nonlinear effects in either linear cavity or optomechanical cavity. More interestingly, we find that the strong photon blockade under single-photon optomechanical weak coupling condition could be observed in the quantum regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomenon. We hope that our work can give new perspectives in engineering nonlinear quantum phenomena.Comment: 12 pages, 11 figure

    Tunable Flux through a Synthetic Hall Tube of Neutral Fermions

    Full text link
    Hall tube with a tunable flux is an important geometry for studying quantum Hall physics, but its experimental realization in real space is still challenging. Here, we propose to realize a synthetic Hall tube with tunable flux in a one-dimensional optical lattice with the synthetic ring dimension defined by atomic hyperfine states. We investigate the effects of the flux on the system topology and study its quench dynamics. Utilizing the tunable flux, we show how to realize topological charge pumping, where interesting charge flow and transport are observed in rotated spin basis. Finally, we show that the recently observed quench dynamics in a synthetic Hall tube can be explained by the random flux existing in the experiment.Comment: 6 pages, 7 figure

    Quantum feedback: theory, experiments, and applications

    Full text link
    The control of individual quantum systems is now a reality in a variety of physical settings. Feedback control is an important class of control methods because of its ability to reduce the effects of noise. In this review we give an introductory overview of the various ways in which feedback may be implemented in quantum systems, the theoretical methods that are currently used to treat it, the experiments in which it has been demonstrated to-date, and its applications. In the last few years there has been rapid experimental progress in the ability to realize quantum measurement and control of mesoscopic systems. We expect that the next few years will see further rapid advances in the precision and sophistication of feedback control protocols realized in the laboratory.Comment: Updated version of a review paper about quantum feedbac

    Entanglement distribution over quantum code-division-multiple-access networks

    Full text link
    We present a method for quantum entanglement distribution over a so-called code-division-multiple-access network, in which two pairs of users share the same quantum channel to transmit information. The main idea of this method is to use different broad-band chaotic phase shifts, generated by electro-optic modulators (EOMs) and chaotic Colpitts circuits, to encode the information-bearing quantum signals coming from different users, and then recover the masked quantum signals at the receiver side by imposing opposite chaotic phase shifts. The chaotic phase shifts given to different pairs of users are almost uncorrelated due to the randomness of chaos and thus the quantum signals from different pair of users can be distinguished even when they are sent via the same quantum channel. It is shown that two maximally-entangled states can be generated between two pairs of users by our method mediated by bright coherent lights, which can be more easily implemented in experiments compared with single-photon lights. Our method is robust under the channel noises if only the decay rates of the information-bearing fields induced by the channel noises are not quite high. Our study opens up new perspectives for addressing and transmitting quantum information in future quantum networks

    Quantum Coherent Nonlinear Feedbacks with Applications to Quantum Optics on Chip

    Full text link
    In the control of classical mechanical systems, the feedback has been successfully applied to the production of the desired nonlinear dynamics. However, how much this can be done is still an open problem in quantum mechanical systems. This paper proposes a scheme of generating strong nonlinear quantum effects via the recently developed coherent feedback techniques, which can be shown to outperform the measurement-based quantum feedback scheme that can only generate pseudo-nonlinear quantum effects. Such advancement is demonstrated by two application examples in quantum optics on chip. In the first example, we show that the nonlinear Kerr effect can be generated and amplified to be comparable with the linear effect in a transmission line resonator (TLR). In the second example, we show that by tuning the gains of the quantum amplifiers in a TLR coherent feedback network, non-Gaussian "light" (microwave field) can be generated and manipulated via the nonlinear effects which exhibits fully quantum sub-Poisson photoncount statistics and photon antibunching phenomenon. The scheme opens promising applications in demonstrating strong nonlinear quantum optics on chip, which is extremely weak and inflexible in traditional quantum optical devices.Comment: 12 pages, 9 figure
    • …
    corecore