2,857 research outputs found

    A Computational Framework for the Mixing Times in the QBD Processes with Infinitely-Many Levels

    Full text link
    In this paper, we develop some matrix Poisson's equations satisfied by the mean and variance of the mixing time in an irreducible positive-recurrent discrete-time Markov chain with infinitely-many levels, and provide a computational framework for the solution to the matrix Poisson's equations by means of the UL-type of RGRG-factorization as well as the generalized inverses. In an important special case: the level-dependent QBD processes, we provide a detailed computation for the mean and variance of the mixing time. Based on this, we give new highlight on computation of the mixing time in the block-structured Markov chains with infinitely-many levels through the matrix-analytic method

    Electrochemical Performances of Electroactive Nano-Layered Organic-Inorganic Perovskite Containing Trivalent Iron Ion and its Use for a DNA Biosensor Preparation

    Get PDF
    A steady nano organic-inorganic perovskite hybrid with [H23-AMP]3/2Fe(CN)6 (3-AMP = 3-methylaminopyridine) was prepared in the air. The structure is an unusual layered organic-inorganic type. The resulting hybrid enveloped in paraffin to prepare [H23-AMP]3/2Fe(CN)6 paste electrode (HPE) shows good electrochemical activity and a couple of oxidation and reduction peaks with potential of cyclic voltammometry (CV) at around 440 mV and 30 mV. Compared with that on CPE, oxidation potential of Fe(CN)63− on HPE shifts negatively 259.7 mV and that of reduction shifts positively 338.7 mV, which exhibits that [H23-AMP]3/2Fe(CN)6 can accelerate the electron-transfer to improve the electrochemical reaction reversibility. Such characteristics of [H23-AMP]3/2Fe(CN)6 have been employed to prepare the DNA biosensor. The single-strand DNA (ssDNA) and double-strand DNA (dsDNA) immobilized on HPE, respectively, can improve the square wave voltammometry (SWV) current and SWV potential shifts positively. The effect of pH was evaluated. And there is hybridization peak on SWV curve using HPE immobilized ssDNA in the complementary ssDNA solution. And HPE immobilized ssDNA can be utilized to monitor the DNA hybridization and detect complementary ssDNA, covering range from 3.24 × 10−7 to 6.72 × 10−5 g/mL with detection limit of 1.57 × 10−7 g/mL. The DNA biosensor exhibits a good stability and reproducibility

    Adaptive Leader-Follower Formation Control for Autonomous Mobile Robots

    Get PDF

    Adaptive Leader-Follower Formation Control for Autonomous Mobile Robots

    Get PDF

    5-Methyl-3,3-bis­(morpholin-4-yl)-1-[2-(morpholin-4-yl)eth­yl]-2,3-dihydro-1H-indol-2-one

    Get PDF
    In the title compound, C23H34N4O4, the morpholine rings adopt chair conformations. The N atom of the indol-2-one group is linked to the N atom of one morpholine ring through a flexible ethyl group with an almost cif conformation. In the crystal, molecules are linked by C—H⋯O interactions into infinite chains along the c direction. The almost parallel infinite chains are further inter­connected via other sets of C—H⋯O inter­actions, forming a three-dimensional framework

    The thermal SZ tomography

    Full text link
    The thermal Sunyaev-Zel'dovich (tSZ) effect directly measures the thermal pressure of free electrons integrated along the line of sight and thus contains valuable information on the thermal history of the universe. However, the redshift information is entangled in the projection along the line of sight. This projection effect severely degrades the power of the tSZ effect to reconstruct the thermal history. We investigate the tSZ tomography technique to recover this otherwise lost redshift information by cross correlating the tSZ effect with galaxies of known redshifts, or alternatively with matter distribution reconstructed from weak lensing tomography. We investigate in detail the 3D distribution of the gas thermal pressure and its relation with the matter distribution, through our adiabatic hydrodynamic simulation and the one with additional gastrophysics including radiative cooling, star formation and supernova feedback. (1) We find a strong correlation between the gas pressure and matter distribution, with a typical cross correlation coefficient r ~ 0.7 at k . 3h/Mpc and z < 2. This tight correlation will enable robust cross correlation measurement between SZ surveys such as Planck, ACT and SPT and lensing surveys such as DES and LSST, at ~20-100{\sigma} level. (2) We propose a tomography technique to convert the measured cross correlation into the contribution from gas in each redshift bin to the tSZ power spectrum. Uncertainties in gastrophysics may affect the reconstruction at ~ 2% level, due to the ~ 1% impact of gastrophysics on r, found in our simulations. However, we find that the same gastrophysics affects the tSZ power spectrum at ~ 40% level, so it is robust to infer the gastrophysics from the reconstructed redshift resolved contribution.Comment: 10 pages, 7 figures, 2 appendices, accepted by Ap

    ReAct: Temporal Action Detection with Relational Queries

    Full text link
    This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries, similar to DETR, which has shown great success in object detection. However, the framework suffers from several problems if directly applied to TAD: the insufficient exploration of inter-query relation in the decoder, the inadequate classification training due to a limited number of training samples, and the unreliable classification scores at inference. To this end, we first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations. Moreover, we propose two losses to facilitate and stabilize the training of action classification. Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries. The proposed method, named ReAct, achieves the state-of-the-art performance on THUMOS14, with much lower computational costs than previous methods. Besides, extensive ablation studies are conducted to verify the effectiveness of each proposed component. The code is available at https://github.com/sssste/React.Comment: ECCV202

    Ab-origin: an enhanced tool to identify the sourcing gene segments in germline for rearranged antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the adaptive immune system, variable regions of immunoglobulin (IG) are encoded by random recombination of variable (V), diversity (D), and joining (J) gene segments in the germline. Partitioning the functional antibody sequences to their sourcing germline gene segments is vital not only for understanding antibody maturation but also for promoting the potential engineering of the therapeutic antibodies. To date, several tools have been developed to perform such "trace-back" calculations. Yet, the predicting ability and processing volume of those tools vary significantly for different sets of data. Moreover, none of them give a confidence for immunoglobulin heavy diversity (IGHD) identification. Developing fast, efficient and enhanced tools is always needed with the booming of immunological data.</p> <p>Results</p> <p>Here, a program named Ab-origin is presented. It is designed by batch query against germline databases based on empirical knowledge, optimized scoring scheme and appropriate parameters. Special efforts have been paid to improve the identification accuracy of the short and volatile region, IGHD. In particular, a threshold score for certain sensitivity and specificity is provided to give the confidence level of the IGHD identification.</p> <p>Conclusion</p> <p>When evaluated using different sets of both simulated data and experimental data, Ab-origin outperformed all the other five popular tools in terms of prediction accuracy. The features of batch query and confidence indication of IGHD identification would provide extra help to users. The program is freely available at <url>http://mpsq.biosino.org/ab-origin/supplementary.html</url>.</p
    corecore