5,369 research outputs found

    Identification of Colour Reconnection using Factorial Correlator

    Get PDF
    A new signal is proposed for the colour reconnection in the hadronic decay of W+ W- in e+e- collisions. Using Pythia Monte Carlo it is shown that this signal, being based on the factorial correlator, is more sensitive than the ones using only averaged quantities.Comment: 6 pages 1 postscript figur

    A feedback-driven bubble G24.136+00.436: a possible site of triggered star formation

    Full text link
    We present a multi-wavelength study of the IR bubble G24.136+00.436. The J=1-0 observations of 12^{12}CO, 13^{13}CO and C18^{18}O were carried out with the Purple Mountain Observatory 13.7 m telescope. Molecular gas with a velocity of 94.8 km s−1^{-1} is found prominently in the southeast of the bubble, shaping as a shell with a total mass of ∼2×104\sim2\times10^{4} M⊙M_{\odot}. It is likely assembled during the expansion of the bubble. The expanding shell consists of six dense cores. Their dense (a few of 10310^{3} cm−3^{-3}) and massive (a few of 10310^{3} M⊙M_{\odot}) characteristics coupled with the broad linewidths (>> 2.5 km s−1^{-1}) suggest they are promising sites of forming high-mass stars or clusters. This could be further consolidated by the detection of compact HII regions in Cores A and E. We tentatively identified and classified 63 candidate YSOs based on the \emph{Spitzer} and UKIDSS data. They are found to be dominantly distributed in regions with strong emission of molecular gas, indicative of active star formation especially in the shell. The HII region inside the bubble is mainly ionized by a ∼\simO8V star(s), of the dynamical age ∼\sim1.6 Myr. The enhanced number of candidate YSOs and secondary star formation in the shell as well as time scales involved, indicate a possible scenario of triggering star formation, signified by the "collect and collapse" process.Comment: 13 pages, 10 figures, 4 tables, accepted by Ap
    • …
    corecore