6,178 research outputs found

    Partition Function Expansion on Region-Graphs and Message-Passing Equations

    Full text link
    Disordered and frustrated graphical systems are ubiquitous in physics, biology, and information science. For models on complete graphs or random graphs, deep understanding has been achieved through the mean-field replica and cavity methods. But finite-dimensional `real' systems persist to be very challenging because of the abundance of short loops and strong local correlations. A statistical mechanics theory is constructed in this paper for finite-dimensional models based on the mathematical framework of partition function expansion and the concept of region-graphs. Rigorous expressions for the free energy and grand free energy are derived. Message-passing equations on the region-graph, such as belief-propagation and survey-propagation, are also derived rigorously.Comment: 10 pages including two figures. New theoretical and numerical results added. Will be published by JSTAT as a lette

    What kinds of coordinate can keep the Hawking temperature invariant for the static spherically symmetric black hole?

    Full text link
    By studying the Hawking radiation of the most general static spherically symmetric black hole arising from scalar and Dirac particles tunnelling, we find the Hawking temperature is invariant in the general coordinate representation (\ref{arbitrary1}), which satisfies two conditions: a) its radial coordinate transformation is regular at the event horizon; and b) there is a time-like Killing vector.Comment: 10 page

    Cyber-risks in the Industrial Internet of Things (IIoT): towards a method for continuous assessment.

    Get PDF
    Continuous risk monitoring is considered in the context of cybersecurity management for the Industrial Internet-of-Thing. Cyber risk management best practice is for security controls to be deployed and configured in order to bring down risk exposure to an acceptable level. However, threats and known vulnerabilities are subject to change, and estimates of risk are subject to many uncertainties, so it is important to review risk assessments and update controls when required. Risks are typically reviewed periodically (e.g. once per month), but the accelerating pace of change means that this approach is not sustainable, and there is a requirement for continuous monitoring of cybersecurity risks. The method described in this paper aims to alert security staff of significant changes or trends in estimated risk exposure to facilitate rational and timely decisions. Additionally, it helps predict the success and impact of a nascent security breach allowing better prioritisation of threats and selection of appropriate responses. The method is illustrated using a scenario based on environmental control in a data centre

    Recurrence and Polya number of general one-dimensional random walks

    Full text link
    The recurrence properties of random walks can be characterized by P\'{o}lya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities ll and rr, or remain at the same position with probability oo (l+r+o=1l+r+o=1). We calculate P\'{o}lya number PP of this model and find a simple expression for PP as, P=1ΔP=1-\Delta, where Δ\Delta is the absolute difference of ll and rr (Δ=lr\Delta=|l-r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability ll equals to the right-moving probability rr.Comment: 3 page short pape

    Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light

    Full text link
    Special relativity is foundation of many branches of modern physics, of which theoretical results are far beyond our daily experience and hard to realized in kinematic experiments. However, its outcomes could be demonstrated by making use of convenient substitute, i.e. squeezed light in present paper. Squeezed light is very important in the field of quantum optics and the corresponding transformation can be regarded as the coherent state of SU(1; 1). In this paper, the connection between the squeezed operator and Lorentz boost is built under certain conditions. Furthermore, the additional law of relativistic velocities and the angle of Wigner rotation are deduced as well

    Non-Markovian Quantum Trajectories of Many-Body Quantum Open Systems

    Full text link
    A long-standing open problem in non-Markovian quantum state diffusion (QSD) approach to open quantum systems is to establish the non-Markovian QSD equations for multiple qubit systems. In this paper, we settle this important question by explicitly constructing a set of exact time-local QSD equations for NN-qubit systems. Our exact time-local (convolutionless) QSD equations have paved the way towards simulating quantum dynamics of many-body open systems interacting with a common bosonic environment. The applicability of this multiple-qubit stochastic equation is exemplified by numerically solving several quantum open many-body systems concerning quantum coherence dynamics and dynamical control.Comment: 8 pages, 2 figures. manuscript revised and reference update

    Object Picture of Quasinormal Modes for Stringy Black Holes

    Full text link
    We study the quasinormal modes (QNMs) for stringy black holes. By using numerical calculation, the relations between the QNMs and the parameters of black holes are minutely shown. For (1+1)-dimensional stringy black hole, the real part of the quasinormal frequency increases and the imaginary part of the quasinormal frequency decreases as the mass of the black hole increases. Furthermore, the dependence of the QNMs on the charge of the black hole and the flatness parameter is also illustrated. For (1+3)-dimensional stringy black hole, increasing either the event horizon or the multipole index, the real part of the quasinormal frequency decreases. The imaginary part of the quasinormal frequency increases no matter whether the event horizon is increased or the multipole index is decreased.Comment: 4 pages, 5 figure
    corecore