12,219 research outputs found

    Quantum Nonlocality of N-qubit W states

    Full text link
    An experimental setup for testing quantum nonlocality of N qubits is proposed. This method is a generalization of the optical setup proposed by Banaszek and Wodkiewicz [1]. The quantum nonlocality of N qubits can be obtained through its violation of N-qubit Bell inequalities. The correlation function measured in the experiment is described by the Wigner function. The effect of inefficient detector is also considered.Comment: 5 pages and 2 figures, some errors are corrected in v

    Continuous Multipartite Entangled State in Wigner Representation and the Violation of Zukowski-Brukner Inequality

    Full text link
    We construct an explicit Wigner function for N-mode squeezed state. Based on a previous observation that the Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator, we investigate the non-locality of multipartite entangled state by the violation of Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for such squeezed state violate these inequalities by an amount that grows with the number N.Comment: 5 pages, rewritten version, accepted by Phys. Rev.

    Violating Bell Inequalities Maximally for Two dd-Dimensional Systems

    Full text link
    We investigate the maximal violation of Bell inequalities for two dd-dimensional systems by using the method of Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states Ψ>app|\Psi>_{\rm app} that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information.Comment: 6 pages, 1 figure. Revised versio

    Bell inequalities for three particles

    Full text link
    We present tight Bell inequalities expressed by probabilities for three four- and five-dimensional systems. The tight structure of Bell inequalities for three dd-dimensional systems (qudits) is proposed. Some interesting Bell inequalities of three qubits reduced from those of three qudits are also studied.Comment: 8 pages, 3 figures. Accepted for publication in Phys. Rev.
    corecore