8,677 research outputs found

    Isolation, identification and phylogenetic analysis of a pathogen of Haliotis diversicolor supertexta (L.) with mass mortalities

    Get PDF
    Studies were conducted to determine a disease outbreak in 14 day old post-larvae of abalone (Haliotis diversicolor supertexta) which caused mass mortality in July 2010 in Shanwei, China. Twenty-nine bacterial strains were isolated from a sample pool of 10 diseased post-larval abalones on 2216E marine agar plates during a natural outbreak of the disease. Among them, a dominant isolate (referred to as strain 21) was found to be highly virulent to post-larvae in experimental challenge tests, with an LD50 value of 1.0 ×104 colony forming units (CFU) mL-1 on day 3. API 20NE kits and 16S rDNA sequence analysis, identified strain 21 as Oceanomonas doudoroffii. It was susceptible to 10 and moderately susceptible to 1 of the 16 antibiotics examined when antibiotic sensitivities of the bacterium were assayed. Results of this study implicated Oceanomonas doudoroffii strain 21 as a cause of mortalities in post-larval abalone from Shanwei, China

    Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

    Full text link
    Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs

    Multiparty simultaneous quantum identity authentication based on entanglement swapping

    Get PDF
    We present a multiparty simultaneous quantum identity authentication protocol based on entanglement swapping. In our protocol, the multi-user can be authenticated by a trusted third party simultaneously

    Directed electron transport through ballistic quantum dot under microwave radiation

    Full text link
    Rectification of microwave radiation by asymmetric, ballistic quantum dot is observed. The directed transport is studied at different frequency (1-40 GHz) temperatures (0.3K-6K)and magnetic field. Dramatic reduction of the rectification is found in magnetic fields at which the cyclotron (Larmor) radius of the electron orbits at Fermi level is smaller than the size of the quantum dot. It strongly suggests the ballistic nature of the observed nonlinear phenomena. Both symmetric and anti-symmetric with respect to the magnetic field contributions to the directed transport are presented. We have found that the behavior of the symmetric part of the rectified voltage with the magnetic field is different significantly for microwaves with different frequencies. A ballistic model of the directed transport is proposed.Comment: 5 pages, 3 figure

    The distribution of two-dimensional eccentricity of Sunyaev-Zeldovich Effect and X-ray surface brightness profiles

    Full text link
    With the triaxial density profile of dark matter halos and the corresponding equilibrium gas distribution, we derive two-dimensional Sunyaev-Zeldovich (SZ) effect and X-ray surface brightness profiles for clusters of galaxies. It is found that the contour map of these observables can be well approximated by a series of concentric ellipses with scale-dependent eccentricities. The statistical distribution of their eccentricities (or equivalently axial ratios) is analyzed by taking into account the orientation of clusters with respect to the line of sight and the distribution of the axial ratios and the concentration parameters of dark matter halos. For clusters of mass 1013h1M10^{13}h^{-1}{M}_{\odot} at redshift z=0z=0, the axial ratio is peaked at η0.9\eta \sim 0.9 for both SZ and X-ray profiles. For larger clusters, the deviation from circular distributions is more apparent, with η\eta peaked at η0.85\eta \sim 0.85 for M=1015h1MM=10^{15}h^{-1}{M}_{\odot}. To be more close to observations, we further study the axial-ratio distribution for mass-limited cluster samples with the number distribution of clusters at different redshifts described by a modified Press-Schechter model. For a mass limit of value Mlim=1014h1MM_{lim}=10^{14}h^{-1}{M}_{\odot}, the average axial ratio is 0.84 \sim 0.84 with a tail extended to η0.6\eta \sim 0.6. With fast advance of high quality imaging observations of both SZ effect and X-ray emissions, our analyses provide a useful way to probe cluster halo profiles and therefore to test theoretical halo-formation models.Comment: 28 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    PSR J1953+1844 probably being the descendant of an Ultra-compact X-ray binary

    Full text link
    PSR J1953+1844 (i.e., M71E) is a millisecond pulsar (MSP)in a 53 minute binary orbit discovered by the Five-hundred-meter Aperture Spherical radio Telescope. The mass function from pulsar timing is 2.3×1072.3\times10^{-7} MM_\odot. The possible redback origin of this system has been discussed by Pan et al. We discuss here an alternative evolution track for this binary system, namely that PSR J1953+1844 is a descendant of an ultra-compact X-ray binary (UCXB), which has a hydrogen-poor donor accreting onto a neutron star (NS) with an orbital period of 1\leq1 hr. We noticed that some of UCXB systems hold an accreting millisecond X-ray pulsars (AMXPs) and a donor with a mass of about 0.01 M_\odot. M71E has a very similar orbit to those of AMXPs, indicating that it might be evolved from a UCXB similar to PSR J1653--0158. The companion star of M71E should be significantly bloated and it most probably has a carbon and oxygen composition, otherwise a low inclination angle of the orbit is required for a helium companion. The discovery of this M71E binary system may shed light on when and how an NS in a UCXBs turns into a radio pulsar.Comment: Accepted for publication in ApJL. 5 pages, 2 figure

    An extended view of the Pisces Overdensity from the SCUSS survey

    Get PDF
    SCUSS is a u-band photometric survey covering about 4000 square degree of the South Galactic Cap, reaching depths of up to 23 mag. By extending around 1.5 mag deeper than SDSS single-epoch u data, SCUSS is able to probe much a larger volume of the outer halo, i.e. with SCUSS data blue horizontal branch (BHB) stars can trace the outer halo of the Milky Way as far as 100-150 kpc. Utilizing this advantage we combine SCUSS u band with SDSS DR9 gri photometric bands to identify BHB stars and explore halo substructures. We confirm the existence of the Pisces overdensity, which is a structure in the outer halo (at around 80 kpc) that was discovered using RR Lyrae stars. For the first time we are able to determine its spatial extent, finding that it appears to be part of a stream with a clear distance gradient. The stream, which is ~5 degrees wide and stretches along ~25 degrees, consists of 20-30 BHBs with a total significance of around 6sigma over the background. Assuming we have detected the entire stream and that the progenitor has fully disrupted, then the number of BHBs suggests the original system was similar to smaller classical or a larger ultra-faint dwarf galaxy. On the other hand, if the progenitor still exists, it can be hunted for by reconstructing its orbit from the distance gradient of the stream. This new picture of the Pisces overdensity sheds new light on the origin of this intriguing system.Comment: 8 pages, 4 figures, accepted by Ap
    corecore