10,474 research outputs found

    Distinguishing de Sitter universe from thermal Minkowski spacetime by Casimir-Polder-like force

    Get PDF
    We demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.Comment: 11 page

    Two asymptotic expansions for gamma function developed by Windschitl's formula

    Full text link
    In this paper, we develop Windschitl's approximation formula for the gamma function to two asymptotic expansions by using a little known power series. In particular, for n∈Nn\in \mathbb{N} with nβ‰₯4n\geq 4, we have \begin{equation*} \Gamma \left( x+1\right) =\sqrt{2\pi x}\left( \tfrac{x}{e}\right) ^{x}\left( x\sinh \tfrac{1}{x}\right) ^{x/2}\exp \left( \sum_{k=3}^{n-1}\tfrac{\left( 2k\left( 2k-2\right) !-2^{2k-1}\right) B_{2k}}{2k\left( 2k\right) !x^{2k-1}} +R_{n}\left( x\right) \right) \end{equation*} with \begin{equation*} \left| R_{n}\left( x\right) \right| \leq \frac{\left| B_{2n}\right| }{2n\left( 2n-1\right) }\frac{1}{x^{2n-1}} \end{equation*} for all x>0x>0, where B2nB_{2n} is the Bernoulli number. Moreover, we present some approximation formulas for gamma function related to Windschitl's approximation one, which have higher accuracy.Comment: 14 page
    • …
    corecore