90 research outputs found

    Micro-stepping control of ultrasonic stepping motors

    Get PDF
    The ultrasonic stepping motor (USSM) using spatially shifted standing vibrations shows the advantages of high torque, good controllability and open-loop operation. Due to the segmentation problem of piezoelectric materials, the corresponding step size is practically limited. The purpose of this paper is to propose and implement micro-stepping control of this USSM. Different from the available half-step operation, the proposed control simultaneously varies both the combination of phase excitations and the magnitude of applied voltages in such a way that the desired step size can be attained. Digital implementation and experimental verification are given to validate the proposed micro-stepping control.published_or_final_versio

    A short cylinder ultrasonic motor with novel excitation mode

    Get PDF
    This paper presents a short cylinder ultrasonic motor, which is featured by its new structure and novel excitation mode. The stator is composed of two piezoelectric disks and two short cylindrical blocks in which the disks are sandwiched by the blocks to form a special bolted Langevin type transducer. The corresponding vibrations are utilized to produce the driving force. A novel excitation mode is realized which can solve the problem of instability occurred in the conventional excitation mode. By using finite element analysis, the vibration pattern and driving mechanism are simulated. Finally, the proposed motor and its driving circuitry are prototyped to experimentally verify its validity and performance.published_or_final_versio

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Clinical characteristics of the autumn-winter type scrub typhus cases in south of Shandong province, northern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Before 1986, scrub typhus was only found endemic in southern China. Because human infections typically occur in the summer, it is called "summer type". During the autumn-winter period of 1986, a new type of scrub typhus was identified in Shandong and northern Jiangsu province of northern China. This newly recognized scrub typhus was subsequently reported in many areas of northern China and was then called "autumn-winter type". However, clinical characteristics of associated cases have not been reported.</p> <p>Methods</p> <p>From 1995 to 2006, all suspected scrub typhus cases in five township hospitals of Feixian county, Shandong province were enrolled. Indirect immunofluorescent assay (IFA) was used as confirmatory serodiagnosis test. Polymerase chain reaction (PCR) connected with restriction fragment length polymorphism (RFLP) and sequence analyses were used for genotyping of <it>O. tsutsugamushi </it>DNAs. Clinical symptoms and demography of confirmed cases were analyzed.</p> <p>Results</p> <p>A total of 480 scrub typhus cases were confirmed. The cases occurred every year exclusively between September and December with a peak occurrence in October. The case numbers were relatively higher in 1995, 1996, 1997, and 2000 than in other years. 57.9% of cases were in the group aged 21–50. More cases occurred in male (56%) than in female (44%). The predominant occupational group of the cases was farmers (85.0%). Farm work was reported the primary exposure to infection in 67.7% of cases. Fever, rash, and eschar were observed in 100.0%, 90.4%, and 88.5% of cases, respectively. Eschars formed frequently on or around umbilicus, abdomen areas, and front and back of waist (34.1%) in both genders. Normal results were observed in 88.7% (WBC counts), 84.5% (PLT counts), and 89.7% (RBC counts) of cases, respectively. Observations from the five hospitals were compared and no significant differences were found.</p> <p>Conclusion</p> <p>The autumn-winter type scrub typhus in northern China occurred exclusively from September to December with a peak occurrence in October, which was different from the summer type in southern China. In comparison with the summer type, complications associated with autumn-winter type scrub typhus were less severe, and abnormalities of routine hematological parameters were less obvious.</p

    Super-resolution dipole orientation mapping via polarization demodulation

    Full text link
    © The Author(s) 2016. Fluorescence polarization microscopy (FPM) aims to detect the dipole orientation of fluorophores and to resolve structural information for labeled organelles via wide-field or confocal microscopy. Conventional FPM often suffers from the presence of a large number of molecules within the diffraction-limited volume, with averaged fluorescence polarization collected from a group of dipoles with different orientations. Here, we apply sparse deconvolution and least-squares estimation to fluorescence polarization modulation data and demonstrate a super-resolution dipole orientation mapping (SDOM) method that resolves the effective dipole orientation from a much smaller number of fluorescent molecules within a sub-diffraction focal area. We further apply this method to resolve structural details in both fixed and live cells. For the first time, we show that different borders of a dendritic spine neck exhibit a heterogeneous distribution of dipole orientation. Furthermore, we illustrate that the dipole is always perpendicular to the direction of actin filaments in mammalian kidney cells and radially distributed in the hourglass structure of the septin protein under specific labelling. The accuracy of the dipole orientation can be further mapped using the orientation uniform factor, which shows the superiority of SDOM compared with its wide-field counterpart as the number of molecules is decreased within the smaller focal area. Using the inherent feature of the orientation dipole, the SDOM technique, with its fast imaging speed (at sub-second scale), can be applied to a broad range of fluorescently labeled biological systems to simultaneously resolve the valuable dipole orientation information with super-resolution imaging
    • …
    corecore