172 research outputs found

    The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task-switching paradigm

    Get PDF
    Switch costs have been constantly found asymmetrical when switching between two tasks of unequal dominance. We used a combined Stroop-task-switching paradigm and recorded electroencephalographic (EEG) signals to explore the neural mechanism underlying the phenomenon of asymmetrical switch costs. The results revealed that a fronto-central N2 component demonstrated greater negativity in word switch (cW) trials relative to word repeat (wW) trials, and both First P3 and P3b components over the parieto-central region exhibited greater positivity in color switch (wC) trials relative to color repeat (cC) trials, whereas a contrasting switch-related fronto-central SP effect was found to have an opposite pattern for each task. Moreover, the time-frequency analysis showed a right-frontal lower alpha band (9-11 Hz) modulation in the word task, whereas a fronto-central upper alpha band (11-13 Hz) modulation was exclusively found in the color task. These results provide evidence for dissociable neural processes, which are related to inhibitory control and endogenous control, contributing to the generation of asymmetrical switch costs

    China's low-emission pathways toward climate-neutral livestock production for animal-derived foods

    Get PDF
    Funding Information: This research was supported by the National Natural Science Foundation of China (Grant No. 31922080 and 31872403 ), China Agriculture Research System of MOF and MARA and the Hunan province science and technology plan (Grant No. 2022NK2021 ).Peer reviewedPublisher PD

    Toxicological safety assessment of a water extract of Lithocarpus litseifolius by a 90-day repeated oral toxicity study in rats

    Get PDF
    Lithocarpus litseifolius although known as “Sweet Tea” (ST), has been traditionally accepted as a daily beverage and used as a folk medicine in southern China with little understanding of its potential toxicity. This study evaluated the safety of a water extract of ST by a subchronic toxicity study in Sprague-Dawley rats. A total of 80 rats were randomized divided into 4 groups with 10 males and 10 females in each group, treated with 2000, 1,000, 500 and 0 mg/kg body weight of ST extract by gavage for 90 days, respectively. The results of the study showed that ST extract did not induce treatment-related changes in the body and organ weight, food intake, blood hematology and serum biochemistry, urine indices, and histopathology in rats. The NOAEL of ST extract was observed to be 2000 mg/kg/day for rats of both sexes. These results indicated that ST extract was of low toxicity in the experimental conditions of the current study and had the potential for application in food-related products

    Fermented Chinese Formula Shuan-Tong-Ling Protects Brain Microvascular Endothelial Cells against Oxidative Stress Injury

    Get PDF
    Fermented Chinese formula Shuan-Tong-Ling (STL), composed of fourteen medicinal herbs, was an experiential formula by Dr. Zhigang Mei for treating vascular encephalopathy, but the underlying mechanisms remained unknown. In this study, we aimed to investigate the protective effects of fermented STL on hydrogen peroxide- (H2O2-) induced injury in rat brain microvascular endothelial cells (BMECs) and the possible mechanisms. Cultured BMECs were treated with H2O2, STL, or nicotinamide (NAM, a SIRT1 inhibitor). Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was employed to detect cell proliferation and senescence-associated beta-galactosidase (SA-β-gal) was used to examine cell senescence. Cell nuclei were observed by 4′,6-diamidino-2-phenylindole. Additionally, changes in reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) levels were measured. Expression of SIRT1, p21, and PGC-1α was determined by western blot. Cell proliferation significantly increased with STL treatment in a dose-dependent manner. H2O2 treatment could intensify cell senescence and nuclei splitting or pyknosis. With STL treatment, the reduced ROS level was accompanied by increased SOD and GSH activity. Further assays showed upregulation of SIRT1 and PGC-1α and downregulation of p21 after STL treatment. The results revealed that STL could protect BMECs against oxidative stress injury at least partially through the SIRT1 pathway
    corecore