14 research outputs found
Etudes de la convergence d'un calcul Monte Carlo de criticité (utilisation d'un calcul déterministe et détection automatisée du transitoire)
Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en compte de profils d'irradiations, ...) peuvent conduire à de mauvaises estimations du kef f ou des flux locaux. L'objet de cette thèse est de contribuer à rendre plus robuste l'algorithme Monte Carlo utilisé et améliorer la détection de la convergence. L'amélioration du calcul envisagée passe par l'utilisation, lors du calcul Monte Carlo, d'un flux adjoint obtenu par un pré-calcul détermi- niste réalisé en amont. Ce flux adjoint est ensuite utilisé pour déterminer le positionnement de la première génération, modifier la sélection des sites de naissance, et modifier la marche aléatoire par des stratégies de splitting et de roulette russe. Une méthode de détection automatique du transitoire a été développée. Elle repose sur la modélisation des séries de sortie par un processus auto régressif d'ordre 1 et un test statistique dont la variable de décision est la moyenne du pont de Student. Cette méthode a été appli- quée au kef f et à l'entropie de Shannon. Elle est suffisamment générale pour être utilisée sur n'importe quelle série issue d'un calcul Monte Carlo itératif. Les méthodes développées dans cette thèse ont été testées sur plusieurs cas simplifiés présentant des difficultés de convergence neutroniques.Monte Carlo criticality calculation allows to estimate the effective mu- tiplication factor as well as local quantities such as local reaction rates. Some configurations presenting weak neutronic coupling (high burn up pro- file, complete reactor core, ...) may induce biased estimations for kef f or reaction rates. In order to improve robustness of the iterative Monte Carlo méthods, a coupling with a deterministic code was studied. An adjoint flux is obtained by a deterministic calculation and then used in the Monte Carlo. The initial guess is then automated, the sampling of fission sites is modi- fied and the random walk of neutrons is modified using splitting and russian roulette strategies. An automated convergence detection method has been developped. It locates and suppresses the transient due to the initialization in an output series, applied here to kef f and Shannon entropy. It relies on modeling stationary series by an order 1 auto regressive process and applying statistical tests based on a Student Bridge statistics. This method can easily be extended to every output of an iterative Monte Carlo. Methods developed in this thesis are tested on different test cases.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Etudes de la convergence d'un calcul Monte Carlo de criticité : utilisation d'un calcul déterministe et détection automatisée du transitoire
Monte Carlo criticality calculation allows to estimate the effective mu- tiplication factor as well as local quantities such as local reaction rates. Some configurations presenting weak neutronic coupling (high burn up pro- file, complete reactor core, ...) may induce biased estimations for kef f or reaction rates. In order to improve robustness of the iterative Monte Carlo méthods, a coupling with a deterministic code was studied. An adjoint flux is obtained by a deterministic calculation and then used in the Monte Carlo. The initial guess is then automated, the sampling of fission sites is modi- fied and the random walk of neutrons is modified using splitting and russian roulette strategies. An automated convergence detection method has been developped. It locates and suppresses the transient due to the initialization in an output series, applied here to kef f and Shannon entropy. It relies on modeling stationary series by an order 1 auto regressive process and applying statistical tests based on a Student Bridge statistics. This method can easily be extended to every output of an iterative Monte Carlo. Methods developed in this thesis are tested on different test cases.Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en compte de profils d'irradiations, ...) peuvent conduire à de mauvaises estimations du kef f ou des flux locaux. L'objet de cette thèse est de contribuer à rendre plus robuste l'algorithme Monte Carlo utilisé et améliorer la détection de la convergence. L'amélioration du calcul envisagée passe par l'utilisation, lors du calcul Monte Carlo, d'un flux adjoint obtenu par un pré-calcul détermi- niste réalisé en amont. Ce flux adjoint est ensuite utilisé pour déterminer le positionnement de la première génération, modifier la sélection des sites de naissance, et modifier la marche aléatoire par des stratégies de splitting et de roulette russe. Une méthode de détection automatique du transitoire a été développée. Elle repose sur la modélisation des séries de sortie par un processus auto régressif d'ordre 1 et un test statistique dont la variable de décision est la moyenne du pont de Student. Cette méthode a été appli- quée au kef f et à l'entropie de Shannon. Elle est suffisamment générale pour être utilisée sur n'importe quelle série issue d'un calcul Monte Carlo itératif. Les méthodes développées dans cette thèse ont été testées sur plusieurs cas simplifiés présentant des difficultés de convergence neutroniques
Studies on the convergence of a Monte Carlo criticality calculation : coupling with a deterministic code and automated transient detection
Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en compte de profils d'irradiations, ...) peuvent conduire à de mauvaises estimations du kef f ou des flux locaux. L'objet de cette thèse est de contribuer à rendre plus robuste l'algorithme Monte Carlo utilisé et améliorer la détection de la convergence. L'amélioration du calcul envisagée passe par l'utilisation, lors du calcul Monte Carlo, d'un flux adjoint obtenu par un pré-calcul détermi- niste réalisé en amont. Ce flux adjoint est ensuite utilisé pour déterminer le positionnement de la première génération, modifier la sélection des sites de naissance, et modifier la marche aléatoire par des stratégies de splitting et de roulette russe. Une méthode de détection automatique du transitoire a été développée. Elle repose sur la modélisation des séries de sortie par un processus auto régressif d'ordre 1 et un test statistique dont la variable de décision est la moyenne du pont de Student. Cette méthode a été appli- quée au kef f et à l'entropie de Shannon. Elle est suffisamment générale pour être utilisée sur n'importe quelle série issue d'un calcul Monte Carlo itératif. Les méthodes développées dans cette thèse ont été testées sur plusieurs cas simplifiés présentant des difficultés de convergence neutroniques.Monte Carlo criticality calculation allows to estimate the effective mu- tiplication factor as well as local quantities such as local reaction rates. Some configurations presenting weak neutronic coupling (high burn up pro- file, complete reactor core, ...) may induce biased estimations for kef f or reaction rates. In order to improve robustness of the iterative Monte Carlo méthods, a coupling with a deterministic code was studied. An adjoint flux is obtained by a deterministic calculation and then used in the Monte Carlo. The initial guess is then automated, the sampling of fission sites is modi- fied and the random walk of neutrons is modified using splitting and russian roulette strategies. An automated convergence detection method has been developped. It locates and suppresses the transient due to the initialization in an output series, applied here to kef f and Shannon entropy. It relies on modeling stationary series by an order 1 auto regressive process and applying statistical tests based on a Student Bridge statistics. This method can easily be extended to every output of an iterative Monte Carlo. Methods developed in this thesis are tested on different test cases
Comparing the time-eigenvalues of the natural mode equation by weight balancing and α-k methods
International audienc
ANALYSIS OF TIME-EIGENVALUE AND EIGENFUNCTIONS IN THE CROCUS BENCHMARK
Time-dependent neutron transport in non-critical state can be expressed by the natural mode equation. In order to estimate the dominant eigenvalue and eigenfunction of the natural mode, CEA had extended the α-k method and developed the generalized iterated fission probability method (G-IFP) in the TRIPOLI-4® code. CRIEPI has chosen to compute those quantities by a time-dependent neutron transport calculation, and has thus developed a time-dependent neutron transport technique based on k-power iteration (TDPI) in MCNP-5. In this work, we compare the two approaches by computing the dominant eigenvalue and the direct and adjoint eigenfunctions for the CROCUS benchmark. The model has previously been qualified for keffs and kinetic parameters by TRIPOLI-4 and MCNP-5. The eigenvalues of the natural mode equations by α-k and TDPI are in good agreement with each other, and closely follow those predicted by the inhour equation. Neutron spectra and spatial distributions (flux and fission neutron emission) obtained by the two methods are also in good agreement. Similar results are also obtained for the adjoint fundamental eigenfunctions. These findings substantiate the coherence of both calculation strategies for natural mode
Implementation and Testing of Generalized Perturbation Theory Capabilities in TRIPOLI-4®
International audienc
ANALYSIS OF TIME-EIGENVALUE AND EIGENFUNCTIONS IN THE CROCUS BENCHMARK
Time-dependent neutron transport in non-critical state can be expressed by the natural mode equation. In order to estimate the dominant eigenvalue and eigenfunction of the natural mode, CEA had extended the α-k method and developed the generalized iterated fission probability method (G-IFP) in the TRIPOLI-4® code. CRIEPI has chosen to compute those quantities by a time-dependent neutron transport calculation, and has thus developed a time-dependent neutron transport technique based on k-power iteration (TDPI) in MCNP-5. In this work, we compare the two approaches by computing the dominant eigenvalue and the direct and adjoint eigenfunctions for the CROCUS benchmark. The model has previously been qualified for keffs and kinetic parameters by TRIPOLI-4 and MCNP-5. The eigenvalues of the natural mode equations by α-k and TDPI are in good agreement with each other, and closely follow those predicted by the inhour equation. Neutron spectra and spatial distributions (flux and fission neutron emission) obtained by the two methods are also in good agreement. Similar results are also obtained for the adjoint fundamental eigenfunctions. These findings substantiate the coherence of both calculation strategies for natural mode
Use of integral experiments in support to the validation of JEFF-3.2 nuclear data evaluation
For many years now, IRSN has developed its own Monte Carlo continuous energy capability, which allows testing various nuclear data libraries. In that prospect, a validation database of 1136 experiments was built from cases used for the validation of the APOLLO2-MORET 5 multigroup route of the CRISTAL V2.0 package. In this paper, the keff obtained for more than 200 benchmarks using the JEFF-3.1.1 and JEFF-3.2 libraries are compared to benchmark keff values and main discrepancies are analyzed regarding the neutron spectrum. Special attention is paid on benchmarks for which the results have been highly modified between both JEFF-3 versions
Applicability of 3D Monte Carlo simulations for local values calculations in a PWR core
As technical support of the French Nuclear Safety Authority, IRSN has been developing the MORET Monte Carlo code for many years in the framework of criticality safety assessment and is now working to extend its application to reactor physics. For that purpose, beside the validation for criticality safety (more than 2000 benchmarks from the ICSBEP Handbook have been modeled and analyzed), a complementary validation phase for reactor physics has been started, with benchmarks from IRPHEP Handbook and others.
In particular, to evaluate the applicability of MORET and other Monte Carlo codes for local flux or power density calculations in large power reactors, it has been decided to contribute to the “Monte Carlo Performance Benchmark” (hosted by OECD/NEA). The aim of this benchmark is to monitor, in forthcoming decades, the performance progress of detailed Monte Carlo full core calculations. More precisely, it measures their advancement towards achieving high statistical accuracy in reasonable computation time for local power at fuel pellet level. A full PWR reactor core is modeled to compute local power densities for more than 6 million fuel regions.
This paper presents results obtained at IRSN for this benchmark with MORET and comparisons with MCNP. The number of fuel elements is so large that source convergence as well as statistical convergence issues could cause large errors in local tallies, especially in peripheral zones. Various sampling or tracking methods have been implemented in MORET, and their operational effects on such a complex case have been studied. Beyond convergence issues, to compute local values in so many fuel regions could cause prohibitive slowing down of neutron tracking. To avoid this, energy grid unification and tallies preparation before tracking have been implemented, tested and proved to be successful. In this particular case, IRSN obtained promising results with MORET compared to MCNP, in terms of local power densities, standard deviations and computing times
Use of integral experiments in support to the validation of JEFF-3.2 nuclear data evaluation
For many years now, IRSN has developed its own Monte Carlo continuous energy capability, which allows testing various nuclear data libraries. In that prospect, a validation database of 1136 experiments was built from cases used for the validation of the APOLLO2-MORET 5 multigroup route of the CRISTAL V2.0 package. In this paper, the keff obtained for more than 200 benchmarks using the JEFF-3.1.1 and JEFF-3.2 libraries are compared to benchmark keff values and main discrepancies are analyzed regarding the neutron spectrum. Special attention is paid on benchmarks for which the results have been highly modified between both JEFF-3 versions