131 research outputs found
Spinal Stereotactic Body Radiotherapy (SBRT) Planning Techniques
Stereotactic body radiotherapy (SBRT) delivers a highly conformal and hypofractionated radiation dose to a small target with minimal radiation applied to the surrounding areas. The spine is an ideal site for SBRT owing to its relative immobility, the potential clinical benefits of high-dose delivery to this area, and the presence of adjacent critical structures such as the spinal cord, esophagus, and bowel. However, with the potential for radiation myelopathy if the dose is delivered inaccurately or if the spinal cord dose limit is set too high, proper treatment planning techniques for SBRT are important. Intensity modulation techniques are useful for spinal SBRT because of a rapid dose falloff and spinal cord avoidance. In this chapter, various planning techniques will be discussed and reviewed
Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway
<p>Abstract</p> <p>Background</p> <p>Alcohol consumption is an established risk factor for breast cancer metastasis. Yet, the mechanism by which alcohol promotes breast cancer metastases is unknown. The ability of cancer cells to invade through tissue barriers (such as basement membrane and interstitial stroma) is an essential step towards establishing cancer metastasis. In the present study, we identify and examine the roles of two genes, <it>Nm23 </it>and <it>ITGA5</it>, in alcohol-induced breast cancer cell invasion.</p> <p>Methods</p> <p>Human breast cancer T47D cells were treated with ethanol at various concentrations. Boyden chamber invasion assays were used to measure cellular invasive ability. The mRNA expression level of metastasis suppressor genes including <it>Nm23 </it>was determined by qRT-PCR. <it>ITGA5 </it>was identified using a qRT-PCR array of 84 genes important for cell-cell and cell-extracellular matrix interactions. <it>Nm23 </it>overexpression in addition to <it>Nm23</it>- and <it>ITGA5 </it>knock-down were used to determine the role of the Nm23-ITGA5 pathway on cellular invasive ability of T47D cells. Protein expression levels were verified by Western blot.</p> <p>Results</p> <p>Alcohol increased the invasive ability of human breast cancer T47D cells in a dose-dependent manner through the suppression of the <it>Nm23 </it>metastatic suppressor gene. In turn, <it>Nm23 </it>down-regulation increased expression of fibronectin receptor subunit <it>ITGA5</it>, which subsequently led to increased cellular invasion. Moreover, <it>Nm23 </it>overexpression was effective in suppressing the effects of alcohol on cell invasion. In addition, we show that the effects of alcohol on invasion were also inhibited by knock-down of <it>ITGA5</it>.</p> <p>Conclusions</p> <p>Our results suggest that the Nm23-ITGA5 pathway plays a critical role in alcohol-induced breast cancer cell invasion. Thus, regulation of this pathway may potentially be used to prevent the establishment of alcohol-promoted metastases in human breast cancers.</p
Self supervised convolutional kernel based handcrafted feature harmonization: Enhanced left ventricle hypertension disease phenotyping on echocardiography
Radiomics, a medical imaging technique, extracts quantitative handcrafted
features from images to predict diseases. Harmonization in those features
ensures consistent feature extraction across various imaging devices and
protocols. Methods for harmonization include standardized imaging protocols,
statistical adjustments, and evaluating feature robustness. Myocardial diseases
such as Left Ventricular Hypertrophy (LVH) and Hypertensive Heart Disease (HHD)
are diagnosed via echocardiography, but variable imaging settings pose
challenges. Harmonization techniques are crucial for applying handcrafted
features in disease diagnosis in such scenario. Self-supervised learning (SSL)
enhances data understanding within limited datasets and adapts to diverse data
settings. ConvNeXt-V2 integrates convolutional layers into SSL, displaying
superior performance in various tasks. This study focuses on convolutional
filters within SSL, using them as preprocessing to convert images into feature
maps for handcrafted feature harmonization. Our proposed method excelled in
harmonization evaluation and exhibited superior LVH classification performance
compared to existing methods.Comment: 11 pages, 7 figure
Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa
<p>Abstract</p> <p>Background</p> <p>In view of the immense value of <it>Brassica rapa </it>in the fields of agriculture and molecular biology, the multinational <it>Brassica rapa </it>Genome Sequencing Project (BrGSP) was launched in 2003 by five countries. The developing BrGSP has valuable resources for the community, including a reference genetic map and seed BAC sequences. Although the initial <it>B. rapa </it>linkage map served as a reference for the BrGSP, there was ambiguity in reconciling the linkage groups with the ten chromosomes of <it>B. rapa</it>. Consequently, the BrGSP assigned each of the linkage groups to the project members as chromosome substitutes for sequencing.</p> <p>Results</p> <p>We identified simple sequence repeat (SSR) motifs in the <it>B. rapa </it>genome with the sequences of seed BACs used for the BrGSP. By testing 749 amplicons containing SSR motifs, we identified polymorphisms that enabled the anchoring of 188 BACs onto the <it>B. rapa </it>reference linkage map consisting of 719 loci in the 10 linkage groups with an average distance of 1.6 cM between adjacent loci. The anchored BAC sequences enabled the identification of 30 blocks of conserved synteny, totaling 534.9 cM in length, between the genomes of <it>B. rapa </it>and <it>Arabidopsis thaliana</it>. Most of these were consistent with previously reported duplication and rearrangement events that differentiate these genomes. However, we were able to identify the collinear regions for seven additional previously uncharacterized sections of the A genome. Integration of the linkage map with the <it>B. rapa </it>cytogenetic map was accomplished by FISH with probes representing 20 BAC clones, along with probes for rDNA and centromeric repeat sequences. This integration enabled unambiguous alignment and orientation of the maps representing the 10 <it>B. rapa </it>chromosomes.</p> <p>Conclusion</p> <p>We developed a second generation reference linkage map for <it>B. rapa</it>, which was aligned unambiguously to the <it>B. rapa </it>cytogenetic map. Furthermore, using our data, we confirmed and extended the comparative genome analysis between <it>B. rapa </it>and <it>A. thaliana</it>. This work will serve as a basis for integrating the genetic, physical, and chromosome maps of the BrGSP, as well as for studies on polyploidization, speciation, and genome duplication in the genus <it>Brassica</it>.</p
Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein
Transcription factors have been studied as an important drug candidate. Ever since the successful generation of induced pluripotent stem cells (iPSCs), there has been tremendous interest in reprogramming transcription factors. Because of the safety risks involved in a virus-based approach, many researchers have been trying to deliver transcription factors using nonintegrating materials. Thus, delivery of transcription factors produced as recombinant proteins in E. coli was proposed as an alternative method. However, the low level of soluble expression and instability of such recombinant proteins are potential barriers. We engineered a Bombyx mori 30Kc19 protein as a fusion partner for transcription factors to overcome those problems. We have previously reported that 30Kc19 protein can be produced as a soluble form in E. coli and has a cell-penetrating property and a protein-stabilizing effect. Transcription factors fused with 30Kc19 (Oct4-30Kc19, Sox2-30Kc19, c-Myc-30Kc19, L-Myc-30Kc19, and Klf4-30Kc19) were produced as recombinant proteins. Interestingly, Oct4 and L-Myc were expressed as a soluble form by conjugating with 30Kc19 protein, whereas Oct4 alone and L-Myc alone aggregated. The 30Kc19 protein also enhanced the stability of transcription factors both in vitro and in cells. In addition, 30Kc19-conjugated transcription factors showed rapid delivery into cells and transcriptional activity significantly increased. Overall, 30Kc19 protein conjugation simultaneously enhanced soluble expression, stability, and transcriptional activity of transcription factors. We propose that the conjugation with 30Kc19 protein is a novel approach to solve the technical bottleneck of gene regulation using transcription factors.OAIID:RECH_ACHV_DSTSH_NO:T201623709RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A002014CITE_RATE:3.376FILENAME:2. (2016.04) Soluble expression and stability enhancement of.pdfDEPT_NM:화학생물공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/0df54ee9-e9f1-4612-9d6e-6deaa8197e3e/linkCONFIRM:
Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110
Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions
Differential susceptibility to obesity between male, female and ovariectomized female mice
All authors are with the Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, USABackground: The prevalence of obesity has increased dramatically. A direct comparison in the predisposition to obesity between males, premenopausal females, and postmenopausal females with various caloric intakes has not been made. To determine the effects of sex and ovarian hormones on the susceptibility to obesity, we conducted laboratory studies with mice. To eliminate confounders that can alter body weight gain, such as age and food consumption; we used mice with the same age and controlled the amount of calories they consumed. -- Methods: We determined sex-specific susceptibility to obesity between male, non-ovariectomized female, and ovariectomized female mice. To compare susceptibility to gaining body weight between males and females, animals from each sex were exposed to either a 30% calorie-restricted, low-fat (5% fat), or high-fat (35% fat) diet regimen. To establish the role of ovarian hormones in weight gain, the ovaries were surgically removed from additional female mice, and then were exposed to the diets described above. Percent body fat and percent lean mass in the mice were determined by dual energy x-ray absorptiometry (DEXA). -- Results: In all three diet categories, male mice had a greater propensity of gaining body weight than female mice. However, ovariectomy eliminated the protection of female mice to gaining weight; in fact, ovariectomized female mice mimicked male mice in their susceptibility to weight gain. In summary, results show that male mice are more likely to become obese than female mice and that the protection against obesity in female mice is eliminated by ovariectomy. -- Conclusion: Understanding metabolic differences between males and females may allow the discovery of better preventive and treatment strategies for diseases associated with body weight such as cancer and cardiovascular disease.Nutritional [email protected]
- …