115 research outputs found
Determination of the star valency of a graph
AbstractThe star valency of a graph G is the minimum, over all star decompositions π, of the maximum number of elements in π incident with a vertex. The maximum average degree of G, denoted by dmax-ave(G), is the maximum average degree of all subgraphs of G. In this paper, we prove that the star valency of G is either ⌈dmax-ave(G)/2⌉ or ⌈dmax-ave(G)/2⌉+1, and provide a polynomial time algorithm for determining the star valency of a graph
Analysis on the Workspace of Six-degrees-of-freedom Industrial Robot Based on AutoCAD
This research discusses the workspace of the industrial robot with six degrees of freedom(6-DOF) based on AutoCAD platform. Based on the analysis of the overall configuration of the robot, this research establishes the kinematic mathematical model of the industrial robot by using DH parameters, and then solves the workspace of the robot consequently. In the AutoCAD, Auto Lisp language program is adopted to simulate the two-dimensional(2D) and three-dimensional(3D) space of the robot. Software user interface is written by using the dialog box control language of Visual LISP. At last, the research analyzes the trend of the shape and direction of the workspace when the length and angle range of the robot are changed. This research lays the foundation for the design, control and planning of industrial robots
Population structure of Coilia nasus in the Yangtze River revealed by insertion of short interspersed elements
AbstractCoilia nasus is found in the Yangtze River and the coastal waters of China, Korea, and Japan. Two ecotypes (anadromous and freshwater-resident populations) are distributed throughout the Yangtze River basin based on their ecology and behavior, but relatively little is known about the population structure of this species. Analysis of short interspersed element (SINE) insertions, which vary among individuals, has been acknowledged to provide a unique way to study population divergence. SINEs isolated from C. nasus were characterized, and this enabled analysis of the SINE insertion pattern in six populations distributed throughout the Yangtze River basin. In all populations, four SINE loci displayed individual polymorphism, and two SINE loci showed a stochastic loss in all individuals of two resident populations. The correlation between genetic and geographic populations indicated a degree of genetic isolation in this species. In contrast with Coilia grayii and Coilia mystus, two SINE loci appeared only in C. nasus. Sequencing analysis indicated that the high insertion variability of SINEs was attributed mainly to the tails, which contained various repeat copies. The results in this study will be useful for sustainable management of fishery resources and conservation of this species
Mesozoic–Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains
Application of a novel phage LPSEYT for biological control of Salmonella in foods
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Salmonella is a leading cause of foodborne diseases, and in recent years, many isolates have exhibited a high level of antibiotic resistance, which has led to huge pressures on public health. Phages are a promising strategy to control food‐borne pathogens. In this study, one of our environmental phage isolates, LPSEYT, was to be able to restrict the growth of zoonotic Salmonella enterica in vitro over a range of multiplicity of infections. Phage LPSEYT exhibited wide‐ranging pH and thermal stability and rapid reproductive activity with a short latent period and a large burst size. Phage LPSEYT demonstrated potential efficiency as a biological control agent against Salmonella in a variety of food matrices, including milk and lettuce. Morphological observation, comparative genomic, and phylogenetic analysis revealed that LPSEYT does not belong to any of the currently identified genera within the Myoviridae family, and we suggest that LPSEYT represents a new genus, the LPSEYTvirus. This study contributes a phage database, develops beneficial phage resources, and sheds light on the potential application value of phages LPSEYT on food safety
نقش بمبزين در سيری پيش از جذب
پس از صرف غذا و پيش از آنکه مواد غذايی هضم و جذب شوند، دريافت غذا بسرعت وقفه می يابد و انسان احساس سيری می کند. اين موضوع نشان می دهد که اطلاعات مربوط به اعصاب حسی يا مواد هورمونی مترشحه از بخش های فوقانی لوله گوارش موجب سيری پيش از جذب می شود. بعضي نوروترانسميترها و مواد هورمونی به عنوان عوامل فرضی سيری شناخته شده اند که يکی از آنها بمبزين است. بمبزين اعمال يک نوروترانسميتر را در تشکيلات عصبی لوله گوارش پستانداران Bombesin تقليد می کند. بمبزين به کار رفته در بطن های جانبی مغز با فعال کردن سوبستراهای عصبی پاراونتريکولار موجب
وقفه دريافت غذا و هيپوانسولينمی می گردد. با تزريق داخل صفاتی بمبزين نه تنها ميزان دريافت غذا کاهش (Gastrin Releasing) GBP می يابد بلکه فاصله بين غذا نيز افزايش می يابد. بعلاوه بمبزين و سبب آزاد شدن هورمونهايی در روده می شوند که اين مواد خود بعنوان عوامل بروز سيری Peptide عمل می کنن
PCR and Magnetic Bead-Mediated Target Capture for the Isolation of Short Interspersed Nucleotide Elements in Fishes
Short interspersed nucleotide elements (SINEs), a type of retrotransposon, are widely distributed in various genomes with multiple copies arranged in different orientations, and cause changes to genes and genomes during evolutionary history. This can provide the basis for determining genome diversity, genetic variation and molecular phylogeny, etc. SINE DNA is transcribed into RNA by polymerase III from an internal promoter, which is composed of two conserved boxes, box A and box B. Here we present an approach to isolate novel SINEs based on these promoter elements. Box A of a SINE is obtained via PCR with only one primer identical to box B (B-PCR). Box B and its downstream sequence are acquired by PCR with one primer corresponding to box A (A-PCR). The SINE clone produced by A-PCR is selected as a template to label a probe with biotin. The full-length SINEs are isolated from the genomic pool through complex capture using the biotinylated probe bound to magnetic particles. Using this approach, a novel SINE family, Cn-SINE, from the genomes of Coilia nasus, was isolated. The members are 180–360 bp long. Sequence homology suggests that Cn-SINEs evolved from a leucine tRNA gene. This is the first report of a tRNALeu-related SINE obtained without the use of a genomic library or inverse PCR. These results provide new insights into the origin of SINEs
Numerical Simulation of Mechanical Properties of Series System with Bearing and Pier Under Lateral Load
The local series system with typical common plate rubber support/pier in highway reinforced concrete girder bridge is the object of the current research. The finite element numerical simulation method is used to study sensitive parameters – the mechanical properties of the series system under the horizontal load. The simulated results show that the interface bonding strength between the bearing and adjacent structure is reduced; the equivalent shear deformation and the horizontal force of bearing under horizontal load change insignificantly with the increase of horizontal displacement. However, the total shear deformation and equivalent shear deformation increase with the increase of the axial compression ratio. In addition, the top horizontal force and displacement of the pier significantly decrease with reduction of the connection strength at both ends of the bearing. Therefore, adjusting the axial compression ratio of the pier and interfacial connection mode can obviously affect the mechanical properties of the support and adjacent structure, even the failure mode of the local structure. This approach can help estimate the mechanical properties of the existing bridge and determine the reasonable maintenance plan
Complete mitochondrial genome of Iniistius trivittatus and unique variation in two observed inserts between rRNA and tRNA genes in wrasses
Abstract Background The family Labridae made up of 519 species in the world. The functional evolution of the feeding-related jaws leaded to differentiation of species, and the pharyngeal jaw apparatus evolved independently, but evolutionary mechanism still remain unaddressed in wrasses. Mitogenomes data can be used to infer genetic diversification and investigate evolutionary history of wrasses, whereas only eight complete mitogenomes in this family have been sequenced to date. Here, we sequenced the complete mitogenomes of Iniistius trivittatus to investigate genetic differentiation among wrasse species. Results We sequenced the complete mitogenomes of I. trivittatus using a novel PCR strategy. The I. trivittatus mitogenomes is 16,820 bp in length and includes 13 protein -coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region. Compared to eight known mitochondrial genome, 2 additional noncoding regions (lengths of 121 and 107 bp), or so-called inserts, are found in the intergenic regions 12S rRNA - tRNAVal - 16S rRNA. The presumed origin of the two rare inserts is from tRNA- related retrotransposons. Compared with cytochrome b gene, the two insert sequences are highly conserved at the intraspecies level, but they showed significant variation and low similarity (< 70%) at the interspecies level. The insert events were only observed in I. trivittatus by checking the phylogenetic trees based on the complete mitogenomes of Labrida species. This finding provides evidence that in the mitogenomes, retrotransposon inserts result in intraspecific homoplasmy and interspecific heteroplasmy by natural selection and adaptation to various environments. Conclusions This study found additional mitogenome inserts limited in wrasse species. The rRNA genes with inserts might have experienced a selective pressure for adaptation to feeding modes. Such knowledge can enable a better understanding of molecular mechanism underlying morphological evolution in wrasses
- …