86 research outputs found

    Efficient key establishment for group-based wireless sensor deployments

    Full text link
    Establishing pairwise keys for each pair of neighboring sensors is the first concern in securing communication in sensor networks. This task is challenging because resources are limited. Several random key predistribution schemes have been proposed, but they are appropriate only when sensors are uniformly distributed with high density. These schemes also suffer from a dramatic degradation of security when the number of compromised sensors exceeds a threshold. In this paper, we present a group-based key predistribution scheme, GKE, which enables any pair of neighboring sensors to establish a unique pairwise key, regardless of sensor density or distribution. Since pairwise keys are unique, security in GKE degrades gracefully as the number of compromised nodes increases. In addition, GKE is very efficient since it requires only localized communication to establish pairwise keys, thus significantly reducing the communication overhead. Our security analysis and performance evaluation illustrate the superiority of GKE in terms of resilience, connectivity, communication overhead and memory requirement. Categories and Subject Descriptors C.2 [Computer-Communication Networks]: secuirty and protection

    Rupture stress of eutectic composite ceramics with rod-shaped crystals

    Get PDF
    Eutectic composite ceramics has a wide range of applications in the aerospace industry due to its excellent mechanical properties. The rupture stress of the materials is a subject of considerable importance. Eutectic composite ceramics primarily consist of rod-shaped crystals, with a small amount of particles and preexisting defects dispersed throughout. Aligned nano-micron fibers are embedded within the rod-shaped crystals. Rupture stress of a eutectic composite ceramic depends on its fracture surface energy and preexisting defects. In this study, the equivalent fracture surface energy of a eutectic ceramic composite was calculated based on its additional fracture work. Next, the effects of the preexisting defects were considered. Then, a micromechanical model of the eutectic composite ceramic was established based on its microstructural characteristics. The defects were assumed to be lamellar, and the surrounding matrix was assumed to be transversely isotropic. Using this information, the rupture stress of the eutectic ceramic composite was predicted. A comparison of the theoretical and experimental results indicated that the predicted rupture stresses corresponded with the tested data

    The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction.

    Get PDF
    PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage

    High performance position-sensitive-detector based on graphene-silicon heterojunction

    Full text link
    Position-sensitive-detectors (PSDs) based on lateral photoeffect have been widely used in diverse applications, including optical engineering, aerospace and military fields. With increasing demands in long working distance, low energy consumption, and weak signal sensing systems, the poor responsivity of conventional Silicon-based PSDs has become a bottleneck limiting their applications. Herein, we propose a high-performance passive PSD based on graphene-Si heterostructure. The graphene is adapted as a photon absorbing and charge separation layer working together with Si as a junction, while the high mobility provides promising ultra-long carrier diffusion length and facilitates large active area of the device. A PSD with working area of 8 mm x 8 mm is demonstrated to present excellent position sensitivity to weak light at nWs level (much better than the limit of ~{\mu}Ws of Si p-i-n PSDs). More importantly, it shows very fast response and low degree of non-linearity of ~3%, and extends the operating wavelength to the near infrared (IR) region (1319 and 1550 nm). This work therefore provides a new strategy for high performance and broadband PSDs.Comment: 25 pages, 13 figures, to appear in Optic

    Efficient 5 '-3 ' DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon <i>Sulfolobus islandicus</i>

    Get PDF
    BACKGROUND: ATPase/Helicases and nucleases play important roles in homologous recombination repair (HRR). Many of the mechanistic details relating to these enzymes and their function in this fundamental and complicated DNA repair process remain poorly understood in archaea. Here we employed Sulfolobus islandicus, a hyperthermophilic archaeon, as a model to investigate the in vivo functions of the ATPase/helicase HerA, the nuclease NurA, and their associated proteins Mre11 and Rad50. RESULTS: We revealed that each of the four genes in the same operon, mre11, rad50, herA, and nurA, are essential for cell viability by a mutant propagation assay. A genetic complementation assay with mutant proteins was combined with biochemical characterization demonstrating that the ATPase activity of HerA, the interaction between HerA and NurA, and the efficient 5′-3′ DNA end resection activity of the HerA-NurA complex are essential for cell viability. NurA and two other putative HRR proteins: a PIN (PilT N-terminal)-domain containing ATPase and the Holliday junction resolvase Hjc, were co-purified with a chromosomally encoded N-His-HerA in vivo. The interactions of HerA with the ATPase and Hjc were further confirmed by in vitro pull down. CONCLUSION: Efficient 5′-3′ DNA end resection activity of the HerA-NurA complex contributes to necessity of HerA and NurA in Sulfolobus, which is crucial to yield a 3′-overhang in HRR. HerA may have additional binding partners in cells besides NurA. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12867-015-0030-z) contains supplementary material, which is available to authorized users

    Research on interface slippage of fiber reinforced composite ceramics

    Get PDF
    Based on the microscopic characteristics of fiber reinforced composite ceramics, the slippage stress at the interface of composite ceramics under external loading is analyzed. The relation between the applied strain of the triangular symmetrical eutectic and the load of composite ceramics is confirmed. And the maximum shear stress that the triangular symmetrical eutectic can endure is computed. The yield shear stress was calculated by the hardness and fracture toughness of composite ceramics. When the maximum shear stress which the triangular symmetrical eutectic can bear is equal to the yield shear stress, the slipping stress of micro-mechanical interface in composite ceramics is obtained. The results showed that fiber inclusions in the eutectic having smaller dimension and larger volume content would provide larger partial plastic deformation of composite ceramics

    Phosphorylation of the Archaeal Holliday Junction Resolvase Hjc Inhibits Its Catalytic Activity and Facilitates DNA Repair in Sulfolobus islandicus REY15A

    Get PDF
    Protein phosphorylation is one of the main protein post-translational modifications and regulates DNA repair in eukaryotes. Archaeal genomes encode eukaryotic-like DNA repair proteins and protein kinases (ePKs), and several proteins involved in homologous recombination repair (HRR) including Hjc, a conserved Holliday junction (HJ) resolvase in Archaea, undergo phosphorylation, indicating that phosphorylation plays important roles in HRR. Herein, we performed phosphorylation analysis of Hjc by various ePKs from Sulfolobus islandicus. It was shown that SiRe_0171, SiRe_2030, and SiRe_2056, were able to phosphorylate Hjc in vitro. These ePKs phosphorylated Hjc at different Ser/Thr residues: SiRe_0171 on S34, SiRe_2030 on both S9 and T138, and SiRe_2056 on T138. The HJ cleavage activity of the phosphorylation-mimic mutants was analyzed and the results showed that the cleavage activity of S34E was completely lost and that of S9E had greatly reduced. S. islandicus strain expressing S34E in replacement of the wild type Hjc was resistant to higher doses of DNA damaging agents. Furthermore, SiRe_0171 deletion mutant exhibited higher sensitivity to DNA damaging agents, suggesting that Hjc phosphorylation by SiRe_0171 enhanced the DNA repair capability. Our results revealed that HJ resolvase is regulated by protein phosphorylation, reminiscent of the regulation of eukaryotic HJ resolvases GEN1 and Yen1

    Three Gorges Dam: Friend or Foe of Riverine Greenhouse Gases?

    Get PDF
    International audienceDams are often regarded as greenhouse gas (GHG) emitters. However, our study indicated that the world's largest dam, the Three Gorges Dam (TGD), has caused significant drops in annual average emissions of CO2_2, CH4_4 and N2_2O over 4300 km along the Yangtze River, accompanied by remarkable reductions in the annual export of CO2_2 (79%), CH4_4 (50%) and N2_2O (9%) to the sea. Since the commencement of its operation in 2003, the TGD has altered the carbonate equilibrium in the reservoir area, enhanced methanogenesis in the upstream, and restrained methanogenesis and denitrification via modifying anoxic habitats through long-distance scouring in the downstream. These findings suggest that 'large-dam effects' are far beyond our previous understanding spatiotemporally, which highlights the fundamental importance of whole-system budgeting of GHGs under the profound impacts of huge dams
    corecore