11,121 research outputs found
Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis
Canonical correlation analysis (CCA) has been one of the most popular methods
for frequency recognition in steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs). Despite its efficiency, a potential problem
is that using pre-constructed sine-cosine waves as the required reference
signals in the CCA method often does not result in the optimal recognition
accuracy due to their lack of features from the real EEG data. To address this
problem, this study proposes a novel method based on multiset canonical
correlation analysis (MsetCCA) to optimize the reference signals used in the
CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple
linear transforms that implement joint spatial filtering to maximize the
overall correlation among canonical variates, and hence extracts SSVEP common
features from multiple sets of EEG data recorded at the same stimulus
frequency. The optimized reference signals are formed by combination of the
common features and completely based on training data. Experimental study with
EEG data from ten healthy subjects demonstrates that the MsetCCA method
improves the recognition accuracy of SSVEP frequency in comparison with the CCA
method and other two competing methods (multiway CCA (MwayCCA) and phase
constrained CCA (PCCA)), especially for a small number of channels and a short
time window length. The superiority indicates that the proposed MsetCCA method
is a new promising candidate for frequency recognition in SSVEP-based BCIs
- …