2,824 research outputs found

    South Koreans' attitudes toward foreigners, minorities and multiculturalism

    Get PDF
    노트 : Paper prepared for presentation at the annual meeting of the American Sociological Association, Boston, MA from August 1-4, 2008

    Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes

    Get PDF
    The generation of microarray probes with specificity below the species level is an ongoing challenge, not least because the high-throughput detection of microorganisms would be an efficient means of identifying environmentally relevant microbes. Here, we describe how suppression subtractive hybridization (SSH) can be applied to the production of microarray probes that are useful for microbial differentiation at the subspecies level. SSH was used to initially isolate unique genomic sequences of nine Salmonella strains, and these were validated in quadruplicate by microarray analysis. The results obtained indicate that a large group of genes subtracted by SSH could serve together, as one probe, for detecting a microbial subspecies. Similarly, the whole microbial genome (not subjected to SSH) can be used as a species-specific probe. The detailed methods described herein could be used and adapted for the estimation of any cultivable bacteria from different environments

    Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal in lipopolysaccharide (LPS)-stimulated astrocytes and microglial BV-2 cells.</p> <p>Methods</p> <p>Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml) for 24 h, in the presence (1, 2, 5 μM) or absence of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined using gel mobility shift assays.</p> <p>Results</p> <p>We found that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal (1, 2, 5 μM) suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS (1 μg/ml)-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited LPS-elevated Aβ<sub>42 </sub>levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3) siRNA and a pharmacological inhibitor showed that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits LPS-induced activation of STAT3.</p> <p>Conclusions</p> <p>These results indicate that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits neuroinflammatory reactions and amyloidogenesis through inhibition of NF-κB and STAT3 activation, and suggest that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal may be useful for the treatment of neuroinflammatory diseases like Alzheimer's disease.</p

    Functional Benefit after Modification of Radial Forearm Free Flap for Soft Palate Reconstruction

    Get PDF
    ObjectivesTo compare the velopharyngeal function, swallowing and speech of the conventional and modified radial forearm free flap (RFFF) for soft palate reconstruction.MethodsRetrospective clinical study. Twenty-eight patients who underwent oropharyngeal reconstruction with RFFF were divided into two groups: 10 patients had conventional folded RFFF and 18 patients underwent modified method.ResultsThe average speech intelligibility score in modified RFFF group was 8.0±2.4, and 6.2±2.2 in conventional RFFF group (P<0.05). The nasalance was 27.4±7.8% in modified group and 38.6±2.7% in conventional group during no nasal passage reading and 43.6±7.3% in modified group, 55.2±7.6% in conventional group during high nasal passage reading (P<0.05). The subjective swallowing functional score was 2.8 in modified group and 2.1 in conventional group.ConclusionThe speech assessment and nasalance demonstrate a more favorable outcome in modified group than conventional group

    Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM) of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance

    Impact factor of Korean Journal of Pediatrics on Korean Medical Citation Index and Science Citation Index of Web of Science

    Get PDF
    PurposeThe total number of times a paper is cited, also known as the impact factor (IF) of a medical journal, is widely implied in evaluating the quality of a research paper. We evaluated the citation index data as an IF of Korean J Pediatr in Korean Medical Citation Index (KoMCI) and JCI of Web of Science.MethodsWe calculated the IF of Korean J Pediatr at KoMCI supervised by Korean Association of Medical Journal Editors. And we estimated the IF of Korean J Pediatr by the JCI of Web of Science although it was never officially reported.ResultsThe IF of Korean J Pediatr on KoMCI has increased from 0.100 in the year 2000, to 0.205 in 2008, and 0.326 in 2009. Although the IF of Korean J Pediatr was 0.006 in 2005, 0.018 in 2006, 0.028 in 2008, 0.066 in 2009, and 0.018 in 2010 according to the JCI of Web of Science, the number of citations are steadily increasing.ConclusionUnderstanding and realizing the current status will be a stepping stone for further improvement. The next objective of the Korean J Pediatr is to become registered in the SCI or SCIE. Increasing the IF according to the JCI of Web of Science is crucial in order to achieve this goal
    corecore