140 research outputs found

    Sorafenib Modulates the LPS- and A beta-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice

    Get PDF
    Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1 beta by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer's disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain. © 2021 Kim, Park, Park and Hoe.1

    Purification and proteomic identification of putative upstream regulators of polo-like kinase-1 from mitotic cell extracts

    Get PDF
    AbstractPolo-like kinase-1 (Plk1) is phosphorylated on Thr210 for activation during mitosis. Here, we investigated the question of which kinase(s) is the specific upstream kinase of mitotic Plk1. Upstream kinases of Plk1 were purified from mitotic cell extracts through column chromatography procedures, and identified by mass spectrometry. Candidates for Plk1 kinase included p21-activated kinase, aurora A, and mammalian Ste20-like kinases. Immunoprecipitates of these proteins from mitotic cell extracts phosphorylated Plk1 on Thr210. Even if the activity of Aurora A was blocked with a specific inhibitor, Plk1 phosphorylation still occurred, suggesting that function of Plk1 could be controlled by these kinases for proper mitotic progression, as well as by Aurora A in very late G2 phase for the beginning of mitosis.Structured abstractMINT-7996332: PAK1(uniprotkb:Q13153)physically interacts(MI:0915) withPLK1(uniprotkb:P53350) bypull down(MI:0096)MINT-7996345: PAK3(uniprotkb:O75914)physically interacts(MI:0915) withPLK1(uniprotkb:P53350) bypull down(MI:0096

    Lomerizine inhibits LPS-mediated neuroinflammation and tau hyperphosphorylation by modulating NLRP3, DYRK1A, and GSK3α/β

    Get PDF
    IntroductionLomerizine is a calcium channel blocker that crosses the blood–brain barrier and is used clinically in the treatment of migraines. However, whether lomerizine is beneficial in modulating neuroinflammatory responses has not been tested yet.MethodsTo assess the potential of lomerizine for repurposing as a treatment for neuroinflammation, we investigated the effects of lomerizine on LPS-induced proinflammatory responses in BV2 microglial cells, Alzheimer’s disease (AD) excitatory neurons differentiated from induced pluripotent stem cells (iPSCs), and in LPS-treated wild type mice.ResultsIn BV2 microglial cells, lomerizine pretreatment significantly reduced LPS-evoked proinflammatory cytokine and NLRP3 mRNA levels. Similarly, lomerizine pretreatment significantly suppressed the increases in Iba-1, GFAP, proinflammatory cytokine and NLRP3 expression induced by LPS in wild-type mice. In addition, lomerizine posttreatment significantly decreased LPS-stimulated proinflammatory cytokine and SOD2 mRNA levels in BV2 microglial cells and/or wild-type mice. In LPS-treated wild-type mice and AD excitatory neurons differentiated from iPSCs, lomerizine pretreatment ameliorated tau hyperphosphorylation. Finally, lomerizine abolished the LPS-mediated activation of GSK3α/β and upregulation of DYRK1A, which is responsible for tau hyperphosphorylation, in wild-type mice.DiscussionThese data suggest that lomerizine attenuates LPS-mediated neuroinflammatory responses and tau hyperphosphorylation and is a potential drug for neuroinflammation- or tauopathy-associated diseases

    FE65 as a link between VLDLR and APP to regulate their trafficking and processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies found that FE65, a cytoplasmic adaptor protein, interacts with APP and LRP1, altering the trafficking and processing of APP. We have previously shown that FE65 interacts with the ApoE receptor, ApoER2, altering its trafficking and processing. Interestingly, it has been shown that FE65 can act as a linker between APP and LRP1 or ApoER2. In the present study, we tested whether FE65 can interact with another ApoE receptor, VLDLR, thereby altering its trafficking and processing, and whether FE65 can serve as a linker between APP and VLDLR.</p> <p>Results</p> <p>We found that FE65 interacted with VLDLR using GST pull-down and co-immunoprecipitation assays in COS7 cells and in brain lysates. This interaction occurs via the PTB1 domain of FE65. Co-transfection with FE65 and full length VLDLR increased secreted VLDLR (sVLDLR); however, the levels of VLDLR C-terminal fragment (CTF) were undetectable as a result of proteasomal degradation. Additionally, FE65 increased cell surface levels of VLDLR. Moreover, we identified a novel complex between VLDLR and APP, which altered trafficking and processing of both proteins. Furthermore, immunoprecipitation results demonstrated that the presence of FE65 increased the interaction between APP and VLDLR <it>in vitro </it>and <it>in vivo</it>.</p> <p>Conclusions</p> <p>These data suggest that FE65 can regulate VLDLR trafficking and processing. Additionally, the interaction between VLDLR and APP altered both protein's trafficking and processing. Finally, our data suggest that FE65 serves as a link between VLDLR and APP. This novel interaction adds to a growing body of literature indicating trimeric complexes with various ApoE Receptors and APP.</p

    Efficacy of High-dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with Relapsed Medulloblastoma: A Report on The Korean Society for Pediatric Neuro-Oncology (KSPNO)-S-053 Study

    Get PDF
    The efficacy and toxicity of high-dose chemotherapy and autologous stem cell transplantation (HDCT/ASCT) were investigated for improving the outcomes of patients with relapsed medulloblastoma. A total of 15 patients with relapsed medulloblastoma were enrolled in the KSPNO-S-053 study from May 2005 to May 2007. All patients received approximately 4 cycles of salvage chemotherapy after relapse. Thirteen underwent HDCT/ASCT; CTE and CM regimen were employed for the first HDCT (HDCT1) and second HDCT (HDCT2), respectively, and 7 underwent HDCT2. One transplant related mortality (TRM) due to veno-occlusive disease (VOD) occurred during HDCT1 but HDCT2 was tolerable with no further TRM. The 3-yr overall survival probability and event-free survival rates ±95% confidence intervals (CI) were 33.3±12.2% and 26.7% ±11.4%, respectively. When analysis was confined to only patients who had a complete response (CR) or partial response (PR) prior to HDCT, the probability of 3-yr overall survival rates ±95% CI was 40.0±15.5%. No patients with stable disease (SD) or progressive disease (PD) survived. Survival rates from protocol KSPNO-S-053 are encouraging and show that tumor status prior to HDCT/ASCT is an important factor to consider for improving survival rates of patients with relapsed medulloblastoma

    Iron Overload during Follow-up after Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with High-Risk Neuroblastoma

    Get PDF
    Multiple RBC transfusions inevitably lead to a state of iron overload before and after high-dose chemotherapy and autologous stem cell transplantation (HDCT/autoSCT). Nonetheless, iron status during post-SCT follow-up remains unknown. Therefore, we investigated post-SCT ferritin levels, factors contributing to its sustained levels, and organ functions affected by iron overload in 49 children with high-risk neuroblastoma who underwent tandem HDCT/autoSCT. Although serum ferritin levels gradually decreased during post-SCT follow-up, 47.7% of the patients maintained ferritin levels above 1,000 ng/mL at 1 yr after the second HDCT/autoSCT. These patients had higher serum creatinine (0.62 vs 0.47 mg/mL, P = 0.007) than their counterparts (< 1,000 ng/mL). Post-SCT transfusion amount corresponded to increased ferritin levels at 1 yr after the second HDCT/autoSCT (P < 0.001). A lower CD34+ cell count was associated with a greater need of RBC transfusion, which in turn led to a higher serum ferritin level at 1 yr after HDCT/autoSCT. The number of CD34+ cells transplanted was an independent factor for ferritin levels at 1 yr after the second HDCT/autoSCT (P = 0.019). Consequently, CD34+ cells should be transplanted as many as possible to prevent the sustained iron overload after tandem HDCT/autoSCT and consequent adverse effects

    Responses and adverse effects of carboplatin-based chemotherapy for pediatric intracranial germ cell tumors

    Get PDF
    PurposeCisplatin-based chemotherapy has been commonly used for the treatment of intracranial germ cell tumors (IC-GCTs). However, this treatment exhibits some adverse effects such as renal problems and hearing difficulty. Carboplatin-based chemotherapy was administered to pediatric patients with IC-GCTs from August 2004 at the Samsung Medical Center. In this study, we assessed the responses and adverse effects of carboplatin-based chemotherapy in pediatric IC-GCTs patients according to the risk group, and compared the results with those of the previous cisplatin-based chemotherapy.MethodsWe examined 35 patients (27 men and 8 women) diagnosed with IC-GCTs between August 2004 and April 2008 and received risk-adapted carboplatin-based chemotherapy at the Samsung Medical Center. Patients were divided into either low-risk (LR) or high-risk (HR) groups and a retrospective analysis was performed using information from the medical records.ResultsAlthough hematological complications were common, hearing difficulties or grade 3 or 4 creatinine level elevation were not observed in patients who underwent carboplatin-based chemotherapy. The frequency of febrile neutropenia did not differ between the risk groups. The overall survival was 100% and event-free survival (EFS) was 95.7%. The EFS rate was 100% in the LR group and 90% in the HR group, respectively.ConclusionDespite their common occurrence in high-risk patients, no lethal hematological complications were associated with carboplatin-based treatment. The current carboplatin-based chemotherapy protocol is safe and effective for the treatment of pediatric patients with IC-GCTs
    corecore