1,827 research outputs found

    A “Double-Multi” Model for Electromigration of Lithiums and Chlorides in ASR Affected Concrete

    Get PDF
    Existing reinforced concrete structures experience severe durability degradation when subjected to alkali– silica reaction (ASR) and chloride attack. A special electrochemical rehabilitation treatment, containing lithium compound anolyte, has been developed to drive lithium ions into concrete as well as remove chlorides simultaneously, for mitigating both the ASR-induced cracks and the chloride-induced corrosion. Good performance of introduced lithiums in controlling ASR-induced expansion has already been proved. Unfortunately, the migration mechanism of lithium in concrete under an external electric field is seldom investigated in existing literature. In this study, with help of the “double-multi” model, the efficiency of impregnation of lithium ions and simultaneously the removal of chloride ions through a specific electrochemical treatment are numerically evaluated, which results into the distribution profiles of all typical ionic species. The heterogeneous concrete model examines the aggregate effect, especially on the interaction with lithiums which are supposed to mitigate ASR. The ionic interaction between different species and the electrochemical reaction at electrodes are also considered. Through a relative thorough modelling of multi-phase and multi-species, a systemic parametric analysis based on a series of significant factors during electrochemical treatment (e.g., current density, treatment time, temperature, cathode position and concentration of lithium solution) reveals some important tendencies of ionic electromigration in concrete, which are supposed to guide the field application

    Probing Thermal Electrons in GRB Afterglows

    Full text link
    Particle-in-cell simulations have unveiled that shock-accelerated electrons do not follow a pure power-law distribution, but have an additional low-energy "thermal" part, which owns a considerable portion of the total energy of electrons. Investigating the effects of these thermal electrons on gamma-ray burst (GRB) afterglows may provide valuable insights into the particle acceleration mechanisms. We solve the continuity equation of electrons in the energy space, from which multi-wavelength afterglows are derived by incorporating processes including synchrotron radiation, synchrotron self-absorption, synchrotron self-Compton scattering, and gamma-gamma annihilation. First, there is an underlying positive correlation between temporal and spectral indices due to the cooling of electrons. Moreover, thermal electrons would result in the simultaneous non-monotonic variation in both spectral and temporal indices at multi-wavelength, which could be individually recorded by the 2.5-meter Wide Field Survey Telescope and Vera Rubin Observatory Legacy Survey of Space and Time (LSST). The thermal electrons could also be diagnosed from afterglow spectra by synergy observation in the optical (with LSST) and X-ray bands (with the Microchannel X-ray Telescope on board the Space Variable Objects Monitor). Finally, we use Monte Carlo simulations to obtain the distribution of peak flux ratio (RXR_{\rm X}) between soft and hard X-rays, and of the time delay (Δt\Delta t) between peak times of soft X-ray and optical light curves. The thermal electrons significantly raise the upper limits of both RXR_{\rm X} and Δt\Delta t. Thus the distribution of GRB afterglows with thermal electrons is more dispersive in the RXΔtR_{\rm X} - \Delta t plane.Comment: 17 pages, 15 figure

    2-Amino-5-methyl­pyridinium 3-amino­benzoate

    Get PDF
    In the title compound, C6H9N2 +·C7H6NO2 −, the H atom of the N—H group and an H atom of the 2-amino group from the cation are involved in inter­molecular N—H⋯O hydrogen bonds with the O atoms of the carboxyl­ate group of the anion, forming an R 2 2(8) ring motif. These ring motifs are, in turn, connected by further N—H⋯O hydrogen bonds, forming a two-dimensional network. The crystal structure is further stabilized by π⋯π stacking inter­actions involving the benzene and pyridinium rings with a centroid–centroid distance of 3.7594 (8) Å

    Core Collapse Supernova Explosions in Active Galactic Nucleus Accretion Disks

    Full text link
    Astrophysical events that occur in active galactic nucleus (AGN) disks are believed to differ significantly from the ordinary in the interstellar medium. We show that stars located in the outer region of the AGN disk would explode near the original migration starting points instead of being accreted by the central supermassive black hole due to the effect of viscosity. AGN disks provide a dense environment for supernova (SN) explosions, which inevitably involve ejecta-disk interactions. In this paper, we investigate the light curves (LCs) of core-collapse SN exploded in AGN disks. In addition to the fundamental energy source of 56Ni^{56} \mathrm{Ni}--56Co^{56} \mathrm{Co}--56Fe^{56} \mathrm{Fe} decay reaction powering the SN LCs, the forward-reverse shock produced during interactions may contribute significantly to the observed flux. If the stellar winds manage to create a cavity surrounded by a shell near the star before the SN explosion, the ejecta-winds-disk configurations are expected. We present various SN LCs from different types of progenitors and find that the SN LCs are dominated by the radiation of ejecta-disk interaction-induced shocks. The resulting SNe in the AGN disk is a promising transient source for UV and optical band detection by the Neil Gehrels Swift Observatory (Swift), the Ultraviolet Explorer (UVEX) and wide field survey telescopes such as Ultraviolet Transient Astronomy Satellite (ULTRASAT), Wide Field Survey Telescope (WFST) and Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory. These detections could aid in the investigation of AGN discs and the associated high-energy transient occurrences.Comment: 16 pages, 6 figures, 2 tables, matches the published version in Ap

    Cell nucleus elastography with the adjoint-based inverse solver

    Full text link
    Background and Objectives: The mechanics of the nucleus depends on cellular structures and architecture, and impact a number of diseases. Nuclear mechanics is yet rather complex due to heterogeneous distribution of dense heterochromatin and loose euchromatin domains, giving rise to spatially variable stiffness properties. Methods: In this study, we propose to use the adjoint-based inverse solver to identify for the first time the nonhomogeneous elastic property distribution of the nucleus. Inputs of the inverse solver are deformation fields measured with microscopic imaging in contracting cardiomyocytes. Results: The feasibility of the proposed method is first demonstrated using simulated data. Results indicate accurate identification of the assumed heterochromatin region, with a maximum relative error of less than 5%. We also investigate the influence of unknown Poisson's ratio on the reconstruction and find that variations of the Poisson's ratio in the range [0.3-0.5] result in uncertainties of less than 15% in the identified stiffness. Finally, we apply the inverse solver on actual deformation fields acquired within the nuclei of two cardiomyocytes. The obtained results are in good agreement with the density maps obtained from microscopy images. Conclusions: Overall, the proposed approach shows great potential for nuclear elastography, with promising value for emerging fields of mechanobiology and mechanogenetics

    Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice

    Get PDF
    Background: Nervonic acid (C24:1Δ15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. Purpose: The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. Methods: To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. Results: In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. Conclusion: These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).National Key Research and Development, China | Ref. 2021YFE0109200Universidade de Vigo/CISUGThe Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2022TZXD0029The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2022TZXD0032The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2021SFGC0904The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2021TZX D004The Natural Science Foundation of Shandong | Ref. ZR2020MH401The Natural Science Foundation of Shandong | Ref. ZR2021QH351National Wheat Industry Technology System of China | Ref. CARS-03–2
    corecore