236 research outputs found

    New symmetries for the Ablowitz-Ladik hierarchies

    Full text link
    In the letter we give new symmetries for the isospectral and non-isospectral Ablowitz-Ladik hierarchies by means of the zero curvature representations of evolution equations related to the Ablowitz-Ladik spectral problem. Lie algebras constructed by symmetries are further obtained. We also discuss the relations between the recursion operator and isospectral and non-isospectral flows. Our method can be generalized to other systems to construct symmetries for non-isospectral equations.Comment: 11 page

    Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fumarase catalyzes the reversible hydration of fumarate to <smcaps>L</smcaps>-malate and is a key enzyme in the tricarboxylic acid (TCA) cycle and in amino acid metabolism. Fumarase is also used for the industrial production of <smcaps>L</smcaps>-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications.</p> <p>Results</p> <p>A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF) was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from <it>Bacteroides </it>sp. 2_1_33B and <it>Parabacteroides distasonis </it>ATCC 8503 (26% identical and 43% similar). The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in <it>E. coli </it>BL21(DE3)pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form <smcaps>L</smcaps>-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg<sup>2+</sup>. The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: <it>K</it><sub>m</sub>= 0.48 mM, <it>V</it><sub>max </sub>= 827 μM/min/mg, and <it>k</it><sub>cat</sub>/<it>K</it><sub>m </sub>= 1900 mM/s.</p> <p>Conclusions</p> <p>We isolated a novel fumarase gene, <it>fumF</it>, from a sequence-based screen of a plasmid metagenomic library from uncultivated marine microorganisms. The properties of FumF protein may be ideal for the industrial production of <smcaps>L</smcaps>-malate under higher temperature conditions. The identification of FumF underscores the potential of marine metagenome screening for novel biomolecules.</p

    Electroacupuncture alleviates ciliary muscle cell apoptosis in lens-induced myopic guinea pigs through inhibiting the mitochondrial signaling pathway

    Get PDF
    AIM: To investigate the effect of electroacupuncture (EA) on the mitochondria-dependent apoptotic signaling pathway in the ciliary muscle of guinea pigs with negative lens-induced myopia (LIM). METHODS: Guinea pigs were randomly divided into normal control (NC) group, LIM group, LIM+SHAM acupoint (LIM+SHAM) group, and LIM+EA group. Animals in the NC group received no intervention, while those in other three groups were covered with -6.0 diopter (D) lenses on right eyes. Meanwhile, animals in the LIM+EA group received EA at Hegu (LI4) combined with Taiyang (EX-HN5) acupoints, while those in the LIM+SHAM group were treated at sham points. After treatments for 1, 2, and 4wk, morphological changes in ciliary muscles were observed with hematoxylin and eosin (H&E) staining and nick end labeling (TUNEL), and the expression of the mitochondrial apoptotic signaling pathway-related molecules in ciliary muscles was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Additionally, the adenosine triphosphate (ATP) contents were also determined in ciliary muscles. RESULTS: Axial length increased significantly in the LIM and LIM+SHAM groups and decreased in the LIM+EA group. The ciliary muscle fibers were broken and destroyed in both LIM and LIM+SHAM groups, whereas those in the LIM+EA group improved significantly. TUNEL assay showed the number of apoptotic cells increased in the LIM and LIM+SHAM groups, whereas reduced in the LIM+EA group. ATP contents showed a significant decrease in the LIM and LIM+SHAM groups, whereas increased after EA treatment. Compared with the NC group, the dynamin-related protein 1 (DRP1), Caspase3, and apoptotic protease activator 1 (APAF1) levels were significantly increased in the LIM group and decreased in the LIM+EA group. CONCLUSION: The results provide evidence of EA inhibiting the development of myopia by regulating the mitochondrial apoptotic signaling pathway

    Green Tea Polyphenol Epigallocatechin-3-Gallate Promotes Reendothelialization in Carotid Artery of Diabetic Rabbits by Reactivating Akt/eNOS Pathway

    Get PDF
    Background: Epigallocatechin gallate (EGCG) is the most abundant catechin in green tea and has proven benefits on endothelial cells in diabetes. However, it remains unclear whether EGCG could improve function of late endothelial progenitor cells (L-EPCs) in diabetes.Methods: Thirty-six rabbits were randomized into six groups. Thirty diabetic rabbits were induced by a single dose of alloxan (100 mg/kg injection intraperitoneally). All of them were given intragastrically EGCG (50 mg/kg/day) or saline for 7 days after carotid injury. In autotransfusion experiment, L-EPCs were cultured with pre-treated EGCG (40 μM for 72 h) and then were injected into the site of injured vascular. Proliferation and migration of EGCG pre-treated L-EPCs in high glucose condition were assessed by EDU incorporation assay and modified Boyden chamber assay, respectively. The mRNA and protein expression of Akt-eNOS pathway were detected by real-time PCR and western blot.Results: Reendothelialization rate in injured carotid artery of diabetic rabbits was augmented in the EGCG group (50 mg/kg/d for 7 days) compared with the non-EGCG group (74.2 ± 4.6% vs. 25.6 ± 5.9%, P &lt; 0.001). EGCG pre-treated L-EPCs autologous transfusion also accelerated the diabetic rabbits’ carotid reendothelialization compared with the diabetic sham-operated group (65.6 ± 8.5% vs. 32.9 ± 5.0%, P = 0.011). In vitro studies showed, 40 μM EGCG treatment for 72 h recovered L-EPCs’ proliferation and migration, as well as restored the phosphorylation level of Akt and eNOS blocked by high glucose condition.Conclusion: EGCG accelerated reendothelialization in diabetic rabbits after carotid injury in part by reactivating the Akt/eNOS pathway, which might contribute to recovering proliferation and migration of L-EPCs impaired by high glucose

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    CNS-LAND score: predicting early neurological deterioration after intravenous thrombolysis based on systemic responses and injury

    Get PDF
    ImportanceEarly neurological deterioration (END) is a critical complication in acute ischemic stroke (AIS) patients receiving intravenous thrombolysis (IVT), with a need for reliable prediction tools to guide clinical interventions.ObjectiveThis study aimed to develop and validate a rating scale, utilizing clinical variables and multisystem laboratory evaluation, to predict END after IVT.Design, setting, and participantsThe Clinical Trial of Revascularization Treatment for Acute Ischemic Stroke (TRAIS) cohort enrolled consecutive AIS patients from 14 stroke centers in China (Jan 2018 to Jun 2022).OutcomesEND defined as NIHSS score increase &gt;4 points or death within 24 h of stroke onset.Results1,213 patients (751 in the derivation cohort, 462 in the validation cohort) were included. The CNS-LAND score, a 9-point scale comprising seven variables (CK-MB, NIHSS score, systolic blood pressure, LDH, ALT, neutrophil, and D-dimer), demonstrated excellent differentiation of END (derivation cohort C statistic: 0.862; 95% CI: 0.796–0.928) and successful external validation (validation cohort C statistic: 0.851; 95% CI: 0.814–0.882). Risk stratification showed END risks of 2.1% vs. 29.5% (derivation cohort) and 2.6% vs. 31.2% (validation cohort) for scores 0–3 and 4–9, respectively.ConclusionCNS-LAND score is a reliable predictor of END risk in AIS patients receiving IVT

    Histone H4 Lysine 12 Acetylation Regulates Telomeric Heterochromatin Plasticity in Saccharomyces cerevisiae

    Get PDF
    Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity

    Outlook for inverse design in nanophotonics

    Full text link
    Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field and on-chip optics.Comment: 13 pages, 6 figure
    corecore