7,202 research outputs found

    Psychological Stress Induces Temporary Masticatory Muscle Mechanical Sensitivity in Rats

    Get PDF
    To explore the relationship between psychological stress and masticatory muscle pain, we created a communication stress animal model to determine whether psychological stress could induce increased mechanical sensitivity in masticatory muscles and to study the changes of mechanical nociceptive thresholds after stress removal. Forty-eight male Sprague-Dawley rats were divided into a control group (CON), a foot-shocked group (FS, including 3 subgroups recorded as FS-1, FS-2, and FS-3), a psychological stress group (PS), and a drug treatment group (DT). PS and DT rats were confined in a communication box for one hour a day to observe the psychological responses of neighboring FS rats.Measurements of the mechanical nociceptive thresholds of the bilateral temporal and masseter muscles showed a stimulus-response relationship between psychological stress and muscle mechanical sensitivity. The DT rats, who received a diazepam injection, showed almost the same mechanical sensitivity of the masticatory muscles to that of the control in response to psychological stress. Fourteen days after the psychological stressor was removed, the mechanical nociceptive thresholds returned to normal. These findings suggest that psychological stress is directly related to masticatory muscle pain. Removal of the stressor could be a useful method for relieving mechanical sensitivity increase induced by psychological stress

    Begonia wuzhishanensis (sect. Diploclinium, Begoniaceae), a new species from Hainan Island, China

    Get PDF
    Background: Hainan is the largest island of the Indo-Burma Biodiversity Hotspot and has the best preserved and most extensive tropical forests in China. A recent study on distribution of endangered species in China identifies southern Hainan as one of eight hotspots for plant conservation in the country. In continuation of our studies of Asian Begonia, we report the discovery of an attractive undescribed species, B. wuzhishanensis C.-I Peng, X.H. Jin & S.M.Ku, from Hainan Island. Results: Living plant of the new species, Begonia wuzhishanensis, was collected in 2009 and cultivated in the experimental greenhouse for morphological and cytological studies. It flowered consecutively in 2012 and 2013 in the experimental greenhouse, Academia Sinica. It was assigned to the large, heterogeneous sect. Diploclinium. The chromosome number of this new species was determined to be 2n = 26. Conclusions: A careful study of literature, herbarium specimens and living plants, both in the wild and in cultivation, support the recognition of the new species Begonia wuzhishanensis, which is described in this paper. Begonia wuzhishanensis is currently known only from Fanyang, Wuzhishan Mountain in the center of the island. A line drawing, color plate, and a distribution map are provided to aid in identification

    Trigger efficiencies at BES III

    Full text link
    Trigger efficiencies at BES III were determined for both the J/psi and psi' data taking of 2009. Both dedicated runs and physics datasets are used; efficiencies are presented for Bhabha-scattering events, generic hadronic decay events involving charged tracks, dimuon events and psi' -> pi+pi-J/psi, J/psi -> l+l- events (l an electron or muon). The efficiencies are found to lie well above 99% for all relevant physics cases, thus fulfilling the BES III design specifications.Comment: 6 pages, 4 figure

    LIN28B and Let-7 in Diffuse Midline Glioma: A Review

    Get PDF
    Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG

    Progress in surgical treatment of macular hole retinal detachment in high myopic

    Get PDF
    Macular hole retinal detachment(MHRD)mainly occurs in high myopic eyes with posterior scleral staphyloma and always causes severe visual impairment. The pathogenesis of MHRD in high myopic eyes is still unclear. It is generally believed that it involves various complex traction. A variety of surgical methods have been tried to remove retina tractionin order to achieve retina reattachment and macular hole closure. This article reviews the current surgical methods and progress of MHRD in high myopic eyes

    HOXA-AS2 Promotes Proliferation and Induces Epithelial-Mesenchymal Transition via the miR-520c-3p/GPC3 Axis in Hepatocellular Carcinoma

    Get PDF
    Background/Aims: Previous studies have demonstrated that long non-coding RNAs (lncRNAs) may play critical roles in cancer biology, including Hepatocellular carcinoma (HCC). The HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in HCC remains unknown. The present study examined the effects of HOXA-AS2 on the progression of HCC, and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in HCC tissues and cell lines. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in HCC in vitro and in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in HCC cells. Results: We observed that HOXA-AS2 was up-regulated in HCC tissues and cell lines. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited HCC cells proliferation by causing G1 arrest and promoting apoptosis, whereas HOXA-AS2 overexpression promoted cell growth. Further functional assays indicated that HOXA-AS2 significantly promoted HCC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in HCC cells. MiR-520c-3p was down-regulated and inversely correlated with HOXA-AS2 expression in HCC tissues. miR-520c-3p suppressed cell proliferation, invasion and migration in HCC cells, and enforced expression of miR-520c-3p attenuated the oncogenic effects of HOXA-AS2 in HCC cells. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-223-3p directly targeted the 3’-untranslated region (UTR) of Glypican-3 (GPC3), one of the key players in HCC. GPC3 was up-regulated in HCC tissues, and was negatively correlated with miR-520c-3p expression and positively correlated with HOXA-AS2 expression. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/GPC3 axis may play an important role in the regulation of PTC progression, which could serve as a biomarker and therapeutic target for HCC

    Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model

    Get PDF
    Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA), compared to those treated with chitosan-DNA (pCAGGS). Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection

    Identification of a prognostic signature and ENTR1 as a prognostic biomarker for colorectal mucinous adenocarcinoma

    Get PDF
    BackgroundMucinous adenocarcinoma (MAC) is a unique clinicopathological colorectal cancer (CRC) type that has been recognized as a separate entity from non-mucinous adenocarcinoma (NMAC), with distinct clinical, pathologic, and molecular characteristics. We aimed to construct prognostic signatures and identifying candidate biomarkers for patients with MAC.MethodsDifferential expression analysis, weighted correlation network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO)-Cox regression model were used to identify hub genes and construct a prognostic signature based on RNA sequencing data from TCGA datasets. The Kaplan-Meier survival curve, gene set enrichment analysis (GSEA), cell stemness, and immune infiltration were analyzed. Biomarker expression in MAC and corresponding normal tissues from patients operated in 2020 was validated using immunohistochemistry.ResultsWe constructed a prognostic signature based on ten hub genes. Patients in the high-risk group had significantly worse overall survival (OS) than patients in the low-risk group (p < 0.0001). We also found that ENTR1 was closely associated with OS (p = 0.016). ENTR1 expression was significantly positively correlated with cell stemness of MAC (p < 0.0001) and CD8+ T cell infiltration (p = 0.01), whereas it was negatively associated with stromal scores (p = 0.03). Finally, the higher expression of ENTR1 in MAC tissues than in normal tissues was validated.ConclusionWe established the first MAC prognostic signature, and determined that ENTR1 could serve as a prognostic marker for MAC
    corecore