9,766 research outputs found

    Does three-tangle properly quantify the three-party entanglement for Greenberger-Horne-Zeilinger-type states?

    Full text link
    Some mixed states composed of only GHZ states can be expressed in terms of only W-states. This fact implies that such states have vanishing three-tangle. One of such rank-3 states, ΠGHZ\Pi_{GHZ}, is explicitly presented in this paper. These results are used to compute analytically the three-tangle of a rank-4 mixed state σ\sigma composed of four GHZ states. This analysis with considering Bloch sphere S16S^{16} of d=4d=4 qudit system allows us to derive the hyper-polyhedron. It is shown that the states in this hyper-polyhedron have vanishing three-tangle. Computing the one-tangles for ΠGHZ\Pi_{GHZ} and σ\sigma, we prove the monogamy inequality explicitly. Making use of the fact that the three-tangle of ΠGHZ\Pi_{GHZ} is zero, we try to explain why the W-class in the whole mixed states is not of measure zero contrary to the case of pure states.Comment: 10 pages, no figure V2: new calculational results are included. 11 pages: V3 accepted in the Rapid Communication of PRA, 4 pages (two column

    Mixed-State Entanglement and Quantum Teleportation through Noisy Channels

    Full text link
    The quantum teleportation with noisy EPR state is discussed. Using an optimal decomposition technique, we compute the concurrence, entanglement of formation and Groverian measure for various noisy EPR resources. It is shown analytically that all entanglement measures reduce to zero when Fˉ2/3\bar{F} \leq 2/3, where Fˉ\bar{F} is an average fidelity between Alice and Bob. This fact indicates that the entanglement is a genuine physical resource for the teleportation process. This fact gives valuable clues on the optimal decomposition for higher-qubit mixed states. As an example, the optimal decompositions for the three-qubit mixed states are discussed by adopting a teleportation with W-stateComment: 18 pages, 4 figure

    New Candidates for Topological Insulators : Pb-based chalcogenide series

    Get PDF
    Here, we theoretically predict that the series of Pb-based layered chalcogenides, Pbn_nBi2_2Sen+3_{n+3} and Pbn_nSb2_2Ten+3_{n+3}, are possible new candidates for topological insulators. As nn increases, the phase transition from a topological insulator to a band insulator is found to occur between n=2n=2 and 3 for both series. Significantly, among the new topological insulators, we found a bulk band gap of 0.40eV in PbBi2_2Se4_4 which is one of the largest gap topological insulators, and that Pb2_2Sb2_2Te5_5 is located in the immediate vicinity of the topological phase boundary, making its topological phase easily tunable by changing external parameters such as lattice constants. Due to the three-dimensional Dirac cone at the phase boundary, massless Dirac fermions also may be easily accessible in Pb2_2Sb2_2Te5_5

    Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling

    Full text link
    Magnetization dynamics in a ferromagnet can induce a spin-dependent electric field through spin motive force. Spin current generated by the spin-dependent electric field can in turn modify the magnetization dynamics through spin-transfer torque. While this feedback effect is usually weak and thus ignored, we predict that in Rashba spin-orbit coupling systems with large Rashba parameter αR\alpha_{\rm R}, the coupling generates the spin-dependent electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial \vec{m}/\partial t)], which can be large enough to modify the magnetization dynamics significantly. This effect should be relevant for device applications based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure

    Effects of the Internal and External Factors of Small and Mediumsized Corporations on Green Management Performances through the Establishment and Utilization of Information Systems and Building Relationships for Information and Knowledge

    Get PDF
    The current research was intended to examine the effects of internal and external factors of small and medium-sizedcorporations (SMC) on green management performances through the establishment and utilization of InformationTechnology (IT) and building external relations. The results of the study showed that of the corporate internal factors, theinterest levels of CEOs concerning the environment did not significantly affect the establishment and utilization ofinformation systems that required large expenses and investments in technological core competencies. Of the corporateexternal factors, the intensity of competition within the industry was shown to have a significant effect on buildingrelationships for information and knowledge, but not on the establishment and utilization of information systems. On theother hand, government regulations on the environment had significant effects both on the establishment and utilization ofinformation systems and on building relationships for information and knowledge. The establishment and utilization ofinformation systems had significant effects on building relationships for information and knowledge, but not on greenmanagement performances. However, building relationships for information and knowledge showed significant effects ongreen management performances, suggesting the importance of building relationships for information and knowledge withexternal parties

    Skyrmion Lattice in Two-Dimensional Chiral Magnet

    Full text link
    We develop a theory of the magnetic field-induced formation of Skyrmion crystal state in chiral magnets in two spatial dimensions, motivated by the recent discovery of the Skyrmionic phase of magnetization in thin film of Fe0.5_{0.5}Co0.5_{0.5}Si and in the A-phase of MnSi. Ginzburg-Landau functional of the chiral magnet re-written in the CP1^1 representation is shown to be a convenient framework for the analysis of the Skyrmion states. Phase diagram of the model at zero temperature gives a sequence of ground states, helical spin \rightarrow Skyrme crystal \rightarrow ferromagnet, as the external field BB increases, in good accord with the thin-film experiment. In close analogy with Abrikosov's derivation of the vortex lattice solution in type-II superconductor, the CP1^1 mean-field equation is solved and shown to reproduce the Skyrmion crystal state.Comment: 10 pages, 7 figure

    Microscopic Theory of Rashba Interaction in Magnetic Metal

    Full text link
    Theory of Rashba spin-orbit coupling in magnetic metals is worked out from microscopic Hamiltonian describing d-orbitals. When structural inversion symmetry is broken, electron hopping between dd-orbitals generates chiral ordering of orbital angular momentum, which combines with atomic spin-orbit coupling to result in the Rashba interaction. Rashba parameter characterizing the interaction is band-specific, even reversing its sign from band to band. Large enhancement of the Rashba parameter found in recent experiments is attributed to the orbital mixing of 3d magnetic atoms with non-magnetic heavy elements as we demonstrate by first-principles and tight-binding calculations.Comment: 5 pages, 2 figure

    Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) has been considered a promising technique for the detection of trace molecules in biomedicine and environmental monitoring. The ideal metal nanoparticles for SERS must not only fulfill important requirements such as high near-field enhancement and a tunable far-field response but also overcome the diffusion limitation at extremely lower concentrations of a target material. Here, we introduce a novel method to produce gold nanoparticles with open eccentric cavities by selectively adapting the structure of non-plasmonic nanoparticles via acid-mediated surface replacement. Copper oxide nanoparticles with open eccentric cavities are first prepared using a microwave-irradiation-assisted surfactant-free hydrothermal reaction and are then transformed into gold nanoparticles by an acidic gold precursor while maintaining their original structure. Because of the strong near-field enhancement occurring at the mouth of the open cavities and the very rough surfaces resulting from the uniformly covered hyperbranched sharp multi-tips and the free access of SERS molecules inside of the nanoparticles without diffusion limitation, adenine, one of the four bases in DNA, in an extremely diluted aqueous solution (1.0 pM) was successfully detected with excellent reproducibility upon laser excitation with a 785-nm wavelength. The gold nanoparticles with open eccentric cavities provide a powerful platform for the detection of ultra-trace analytes in an aqueous solution within near-infrared wavelengths, which is essential for highly sensitive, reliable and direct in vivo analysis.None1132sciescopu

    Theory of magnetic field-induced metaelectric critical end point in BiMn2_2O5_5

    Full text link
    A recent experiment on the multiferroic BiMn2_2O5_5 compound under a strong applied magnetic field revealed a rich phase diagram driven by the coupling of magnetic and charge (dipolar) degrees of freedom. Based on the exchange-striction mechanism, we propose here a theoretical model with the intent to capture the interplay of the spin and dipolar moments in the presence of a magnetic field in BiMn2_2O5_5. Experimentally observed behavior of the dielectric constants, magnetic susceptibility, and the polarization is, for the most part, reproduced by our model. The critical behavior observed near the polarization reversal (P=0)(P=0) point in the phase diagram is interpreted as arising from the proximity to the critical end point.Comment: Theory; relevant experiment uploaded as arXiv:0810.190
    corecore