18,658 research outputs found

    Adaptive Temporal Encoding Network for Video Instance-level Human Parsing

    Full text link
    Beyond the existing single-person and multiple-person human parsing tasks in static images, this paper makes the first attempt to investigate a more realistic video instance-level human parsing that simultaneously segments out each person instance and parses each instance into more fine-grained parts (e.g., head, leg, dress). We introduce a novel Adaptive Temporal Encoding Network (ATEN) that alternatively performs temporal encoding among key frames and flow-guided feature propagation from other consecutive frames between two key frames. Specifically, ATEN first incorporates a Parsing-RCNN to produce the instance-level parsing result for each key frame, which integrates both the global human parsing and instance-level human segmentation into a unified model. To balance between accuracy and efficiency, the flow-guided feature propagation is used to directly parse consecutive frames according to their identified temporal consistency with key frames. On the other hand, ATEN leverages the convolution gated recurrent units (convGRU) to exploit temporal changes over a series of key frames, which are further used to facilitate the frame-level instance-level parsing. By alternatively performing direct feature propagation between consistent frames and temporal encoding network among key frames, our ATEN achieves a good balance between frame-level accuracy and time efficiency, which is a common crucial problem in video object segmentation research. To demonstrate the superiority of our ATEN, extensive experiments are conducted on the most popular video segmentation benchmark (DAVIS) and a newly collected Video Instance-level Parsing (VIP) dataset, which is the first video instance-level human parsing dataset comprised of 404 sequences and over 20k frames with instance-level and pixel-wise annotations.Comment: To appear in ACM MM 2018. Code link: https://github.com/HCPLab-SYSU/ATEN. Dataset link: http://sysu-hcp.net/li

    Generation of OAM Radio Waves with Three Polarizations Using Circular Horn Antenna Array

    Get PDF
    This paper provides an effective solution of generating OAM-carrying radio beams with all three polarizations: the linear, the left-hand circular, and the right-hand circular polarizations. Through reasonable configuration of phased antenna array using elements with three polarizations, the OAM radio waves with three polarizations for different states can be generated. The vectors of electric fields with different OAM states for all three polarizations are presented and analyzed in detail. The superposition of two coaxial OAM states is also carried out, and the general conclusion is provided

    Numerical calculation and experiment investigation of sound field in the full model car

    Get PDF
    Currently, much interior sound field research in car is based on the car body that many parts are missed, which is not consistent with the actual condition. In addition, the research results have not been verified by experiment; few things have been done in air tightness of car. In this paper, the full car model has been used to analyze the interior sound field in car, in order to simulate the actual condition accurately. Through the comparison between the analysis results and the experiment, there was a good agreement in full frequency hand. However, there was also a clear peak in 130 Hz that may cause roar; the reason was assumed to be sealing defects. After all the sealing defects were fixed, the sound pressure in the driver’s ear was measured again and compared to the results before. It was found that seal could reduce the sound pressure, which also means the sealing performance of car must be maximized when manufacturing. The contribution coefficient of each panel towards the sound pressure in the driver’s ear in 130 Hz has been calculated by using ATV method in this paper; the result showed that the top panel of car was the main reason for the existence of the clear peak in 130 Hz. Through the replacement of original interior decoration with compound sound package structure and the change of each layer’s properties, the sound package structure with the minimum transmission sound power has been found. The results showed that the combination of (3-4-1) sound package structure is optimal (which means the damping layer thickness was 3 mm, the porous material layer thickness was 4 mm and the viscoelastic cover layer thickness was 1 mm). Besides, the combination of the damping layer with new material has shown a better acoustic performance. This scheme has been used in the top panel of car and has apparently improved the sound pressure condition in the driver’s ear
    • …
    corecore