57,594 research outputs found

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier

    Solar activity forecast with a dynamo model

    Get PDF
    Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.Comment: 17 pages, 18 figures, submitted to MNRA

    Monte Carlo Algorithm for Simulating Reversible Aggregation of Multisite Particles

    Full text link
    We present an efficient and exact Monte Carlo algorithm to simulate reversible aggregation of particles with dedicated binding sites. This method introduces a novel data structure of dynamic bond tree to record clusters and sequences of bond formations. The algorithm achieves a constant time cost for processing cluster association and a cost between O(logM)\mathcal{O}(\log M) and O(M)\mathcal{O}(M) for processing bond dissociation in clusters with MM bonds. The algorithm is statistically exact and can reproduce results obtained by the standard method. We applied the method to simulate a trivalent ligand and a bivalent receptor clustering system and obtained an average scaling of O(M0.45)\mathcal{O}(M^{0.45}) for processing bond dissociation in acyclic aggregation, compared to a linear scaling with the cluster size in standard methods. The algorithm also demands substantially less memory than the conventional method.Comment: 8 pages, 3 figure

    Induced fission of 240Pu

    Full text link
    We study the fission dynamics of 240Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.Comment: 8 pages, 4 figures, talk given at The 6th International Conference on Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 6-2 (2016

    Common Space of Spin and Spacetime

    Full text link
    Given Lorentz invariance in Minkowski spacetime, we investigate a common space of spin and spacetime. To obtain a finite spinor representation of the non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an indefinite inner product space (IIPS) with a normalized positive probability. In this IIPS, the common momentum and common variable of a massive fermion turn out to be ``doubly strict plus-operators''. Due to this nice property, it is straightforward to show an uncertainty relation between fermion mass and proper time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint, and the fermion field equations are derivable from the Lagrangians. Finally, the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on Foundations of Physics Letters in June of 2005, as a personal tribute to Einstein and Dira

    Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model

    Full text link
    We evaluate the nucleon sigma term and in-medium quark condensate in the modified quark-meson coupling model which features a density-dependent bag constant. We obtain a nucleon sigma term consistent with its empirical value, which requires a significant reduction of the bag constant in the nuclear medium similar to those found in the previous works. The resulting in-medium quark condensate at low densities agrees well with the model independent linear order result. At higher densities, the magnitude of the in-medium quark condensate tends to increase, indicating no tendency toward chiral symmetry restoration.Comment: 9 pages, modified version to be publishe
    corecore